ENGR 21: Computer Engineering Fundamentals

Instructor: Emad Masroor

Lecture 13 Tuesday, October 21, 2025

Solving Linear Systems on a computer

(plus a tiny bit of linear algebra)

Fall 2025

Linear Systems of the form Ax = barise in many engineering systems

$$egin{bmatrix} A_{11} & A_{12} & A_{13} \ A_{21} & A_{22} & A_{23} \ A_{31} & A_{32} & A_{33} \ A_{41} & A_{42} & A_{43} \ A_{51} & A_{52} & A_{53} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = egin{bmatrix} b_1 \ b_2 \ b_3 \ b_4 \ b_5 \end{bmatrix} egin{matrix} A_{11}x_1 + A_{12}x_2 + A_{13}x_3 = b_1 \ A_{21}x_1 + A_{22}x_2 + A_{23}x_3 = b_2 \ A_{31}x_1 + A_{32}x_2 + A_{33}x_3 = b_3 \ A_{41}x_1 + A_{42}x_2 + A_{43}x_3 = b_4 \ A_{51}x_1 + A_{52}x_2 + A_{53}x_3 = b_5 \ \end{bmatrix}$$

$$A_{11}x_1 + A_{12}x_2 + A_{13}x_3 = b_1$$

$$A_{21}x_1 + A_{22}x_2 + A_{23}x_3 = b_2$$

$$A_{31}x_1 + A_{32}x_2 + A_{33}x_3 = b_3$$

$$A_{41}x_1 + A_{42}x_2 + A_{43}x_3 = b_4$$

$$A_{51}x_1 + A_{52}x_2 + A_{53}x_3 = b_5$$

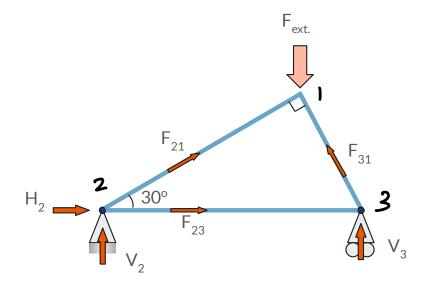
Motivating Example (1 of 2) from ENGR 6

Find the reaction forces H_2 , V_2 , and V_3 and the internal forces

$$\sum F_x = 0 \quad \text{at} \quad 1, 2, 3$$

$$\sum F_y = 0 \quad \text{at} \quad 1, 2, 3$$

$$H_1 \longrightarrow \underbrace{\overset{\mathsf{T}_{21}}{30}}_{30} F_{22}$$

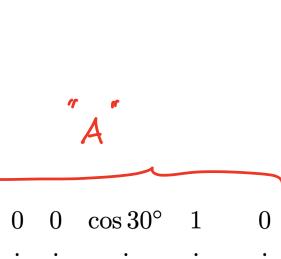


Horizontel Force balance For joint 2:
$$1 H_2 + 0 V_2 + 0 V_3 + (\cos 30^\circ) F_{21} + 1 F_{23} + 0 F_{31} = \{\text{force at 2}\}$$

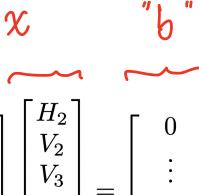
$$\square H_2 + \square V_2 + \square V_3 + \square F_{21} + \square F_{23} + \square F_{31} = \dots$$

Motivating Example (1 of 2) from ENGR 6

Find the reaction forces H_2 , V_2 , and V₃ and the internal forces



horz. 2
$$\begin{bmatrix} 1 & 0 & 0 & \cos 30^{\circ} & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \sin 30^{\circ} & 0 & \sin 60^{\circ} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} H_2 \\ V_2 \\ V_3 \\ F_{21} \\ F_{23} \\ F_{31} \end{bmatrix} =$$



$$\begin{bmatrix} H_2 \\ V_2 \\ V_3 \\ F_{21} \\ F_{23} \\ F_{31} \end{bmatrix} = \begin{bmatrix} 0 \\ \vdots \\ F_{1,\text{ext}} \\ \vdots \end{bmatrix}$$

Motivating Example (2 of 2) from ENGR 11

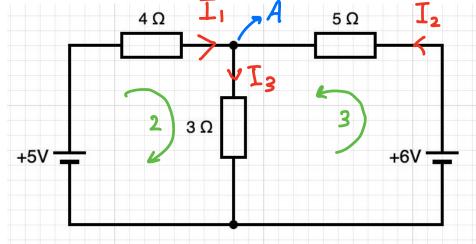
$$I_1 + I_2 - I_3 = 0$$

Find the currents in this circuit

$$O + 1/I_1 + 1/I_2 - 1/I_3 = O$$

2) Loop 2
+5 -4
$$I_1$$
 +0 I_2 - 3 I_3 = 0

3) Loop 3
$$+6 + 0I_{1} - 5I_{2} - 3I_{3} = C$$



known
$$A$$

$$\begin{bmatrix} -4 & 0 & -3 \\ 0 & -5 & -3 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} -5 \\ -6 \\ 0 \end{bmatrix}$$

Solving systems of the kind Ax = b

- Equivalent to "inverting the matrix"
- A: the "system matrix"
- A is often too large Once you have found A⁻¹, you can apply it to many to invert. e.g. N ≈ 10⁶ different right-hand-side vectors b.

What if the number of equations is not equal to the number of unknowns?

- # Unknowns > # Equations : need additional constraints
- # Equations > # Unknowns : problem is 'overdeferminal'
- If # Equations = # Unknowns:
 - o if one equation depends on another, or reflects the same information as another equation, you can't double count.

 reed equations to be linearly independent

A. A = identity matrix

Gaussian Elimination followed by substitution

Systematic way of solving simultaneous equations

$$\begin{bmatrix} 2 & 3 & \chi_1 \\ -1 & 2 & \chi_1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$2x_1 + 3x_2 = 4$$

$$-x_1 + 2x_2 = 5$$
 (2)

Replace (2) with an equation that only has
$$x_2$$
 as unknown.

$$eq.(1) + 2 * eq.(2) \longrightarrow ne$$

$$2x_1 + 3x_2 = 4$$

$$+ -2x_1 + 4x_2 = 10$$

$$0x_1 + 7x_2 = 14 - (2^*)$$

if egns were

$$2x_1 + 3x_2 = 4$$
 $4x_1 + 6x_2 = 8$

linearly dependent! (Bad)

Teaching a computer to perform elimination & substitution

1. Start with
$$Ax = b$$

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

2. Build an 'augmented matrix' using A and b

$$\left[\begin{array}{ccc|c} A_{11} & A_{12} & A_{13} & b_1 \\ A_{21} & A_{22} & A_{23} & b_2 \\ A_{31} & A_{32} & A_{33} & b_3 \end{array}\right] \text{Augmented matrix}$$

3. Perform 'row operations' until you are left with an augmented matrix of the form shown here, called 'row echelon form'.

$$\left[egin{array}{ccc|c} A_{11} & A_{12} & A_{13} & b_1 \ 0 & A_{22} & A_{23} & b_2 \ 0 & 0 & A_{33} & b_3 \end{array}
ight]$$
'row echelon form'

4. Solve equations starting from the bottom, working your way up

10

What are 'row operations'?

There are three types of possible row operations. Typically, we do these operations on the augmented matrix. $\begin{bmatrix} a & b & e \\ d & e & f \\ g & h & i \end{bmatrix} \longrightarrow \begin{bmatrix} j & k & l \\ 0 & m & n \\ 0 & 0 & p \end{bmatrix}$

- Row switching.
- Multiply a row by a non-zero constant
- Add one row to another

Fall 2025 ENGR 21

11

The Gaussian (forward) Elimination Algorithm

2) Let updated row 2 = row 2 -
$$\frac{A_{21}}{A_{11}}$$
 × row 1

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_{1} \\ A_{21} & A_{22} & A_{23} & b_{2} \\ A_{31} & A_{32} & A_{33} & b_{3} \end{bmatrix}$$

$$\begin{bmatrix}
A_{21} & A_{22} & A_{23} & b_2
\end{bmatrix} - \frac{A_{21}}{A_{11}} \times \begin{bmatrix}
A_{11} & A_{12} & A_{13} & b_1
\end{bmatrix} : \text{new row 2}.$$

$$\begin{bmatrix} A_{21} - \overline{A_{21}} \\ A_{11} \end{bmatrix} \times A_{11} , \quad A_{22} - \overline{A_{21}} \times A_{12} , \quad A_{23} - \overline{A_{21}} \times A_{13} , \quad b_{2} - \overline{A_{21}} \times b_{1} \end{bmatrix}$$

3) Let updated row
$$3 = row 3 - \frac{A_{31}}{A_{11}} \times row 1$$

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_{1} \\ O & A_{22} & A_{13} & b_{2} \\ A_{31} & A_{32} & A_{33} & b_{3} \end{bmatrix}$$

$$\begin{bmatrix} A_{31} & A_{11} & A_{12} & A_{32} & - & \boxed{A_{31}} & A_{12} & A_{33} & - & \boxed{A_{31}} & A_{13} & b_3 & - & \boxed{A_{31}} & b_1 \end{bmatrix}$$

The Gaussian (forward) Elimination Algorithm

4) Let updated row
$$3 = row 3 - \frac{A_{32}}{A_{12}} \times row 2$$

$$[A_{31} - A_{32} \times A_{21}, A_{32} - A_{32} A_{22}, A_{23}, A_{23}, A_{23}, b_{3} - A_{32}, b_{2}]$$
already zero.

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & b_1 \\ O & A_{22} & A_{13} & b_2 \\ O & O & A_{33} & b_3 \end{bmatrix}$$

$$\begin{bmatrix}
A_{11} & A_{12} & A_{13} & b_1 \\
O & A_{22} & A_{13} & b_2 \\
O & O & A_{33} & b_3
\end{bmatrix}$$
equivalent
$$\begin{bmatrix}
A_{11} & X_1 & + A_{12} & X_2 & + A_{13} & X_3 & = b_1 \\
& & A_{22} & X_2 & + A_{23} & X_3 & = b_2 \\
& & & & A_{33} & X_3 & = b_3
\end{bmatrix}$$

The backward substitution algorithm

We start from the last row ...

$$\chi_{3} = \frac{b_{3}}{A_{33}}$$
 $\chi_{2} = \frac{b_{2} - A_{23} \cdot \chi_{3}}{A_{22}}$
 $\chi_{1} = \frac{b_{1} - A_{12} \chi_{1} - A_{13} \chi_{3}}{A_{11}}$

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33} \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

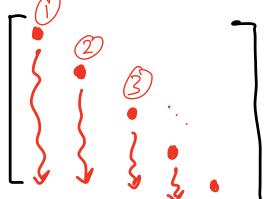
$$x_k = \frac{1}{A_{kk}} \left(b_k - \sum_{j=k+1}^n A_{kj} x_j \right)$$

ENGR 21 Fall 2025 14

Practicing Gaussian Elimination + Backward Substitution by hand

which elements are eliminated first? What's the order?

$$A_{21} \rightarrow A_{31} \rightarrow A_{41}$$



15