ENGR 21 Computer Engineering Fundamentals

Instructor: Fmad Masroor

Lecture 17 Tuesday, Nov 4, 2025

Optimization

Find the 'most ideal' Optimization design, configuration, inputs, etc.

$$f(X_1, X_2, X_3, ..., X_n) = \text{objective function}$$

Maximize the fuel efficiency of an automobile

Independent variables:

- Materials
- Fuel type
- "Aerodynamics" of design
- Exhaust system

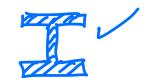
Objective function:

Miles per gallon

Constraints:

Cost

cast it as a minimization or maximization problem.

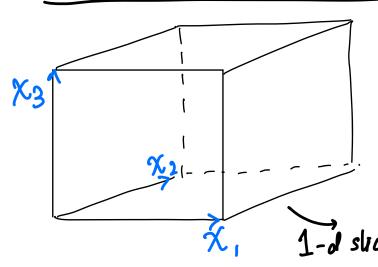

Maximize the bending rigidity of a beam for unidirectional loading

Independent variables:

- Materials
- Spatial distribution of beam cross-section _"shape"

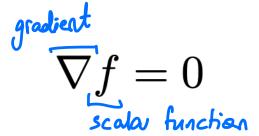
Objective function:

Bending rigidity El


Constraints:

Total cross-sectional area

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \nabla = \begin{bmatrix} 3/3x \\ 9/3y \\ 3/3z \end{bmatrix}$$

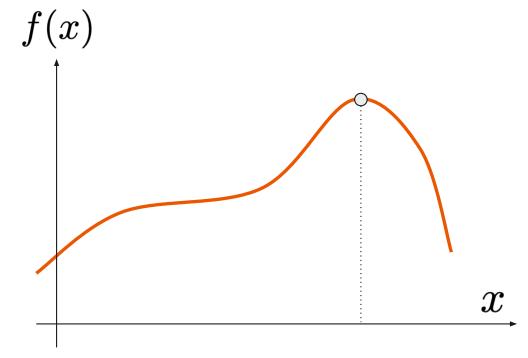

Finding a minimum (or maximum) in

design-variable space

$$\frac{1}{x_i}$$
: i^{th} configuration variable

$$f(x_1, x_2, ..., x_n)$$

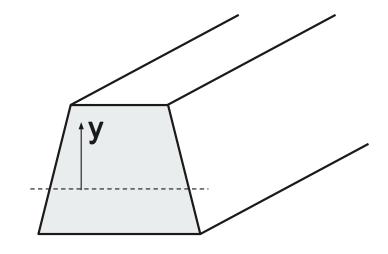
The set $\{x_1=?, x_2=?, ... x_n=?\}$ that gives the smallest value of f anywhere.


Local minimum

The sef $\{x_1 = ?, x_2 = ? ... x_n = ? \}$ that gives the smallest value in the neighborhood.

$$egin{array}{c|c} \partial/\partial X_1 \ \partial/\partial X_2 \ \partial/\partial X_3 \ & dots \ \partial/\partial X_n \end{array}$$

Techniques for single-variable unconstrained optimization



Methods that don't rely on knowledge of f'(x)to maximize f(x)

An optimization problem

The shear stress on the face of this beam, in terms of distance from its centroid y, is hard to calculate.

Shear Stress =

$$\frac{61\,224.2\,-\,1.9334\times10^{6}\,\,y-7.01705\times10^{8}\,\,y^{2}\,+\,4.375\times10^{10}\,\,y^{3}\,-\,6.81818\times10^{11}\,\,y^{4}}{0.000686111\,-\,0.0533333\,\,y\,+\,1.\,\,y^{2}}$$

If you are only allowed to calculate the above formula <u>a total of 10 times</u>, how would you determine the value of y where the shear stress is a maximum?

```
Lec 9.1 Thu, Nov 4

Optimize the following function

def shearStress(y):
    return (61224.2 - 1.9334e6*y - 7.01705e8 * y**2 + 4.375e10 * y**3 - 6
```

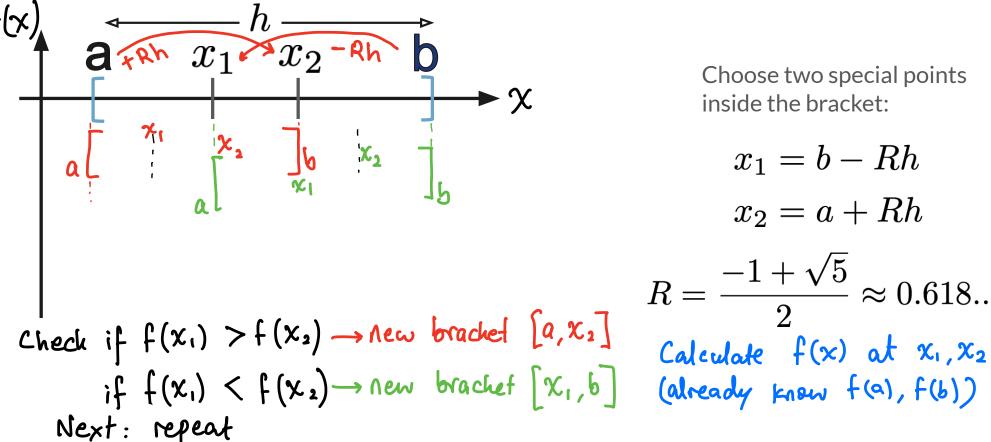
ENGR 21 Fall 2025

(Looking for a maximum in f(x)), x^{*} **Bracketing** for single-variable unconstrained optimization of f(x)

Lfirst step

- 1. Pick some x

 2. Increment $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \dots$ in direction of increasing f(x)
- 3. Keep going until f(x) decreases x keep the last 2 points $[x_{n-1}, x_n]$ been successfully


$$[x_{n-1}, x_n]$$

Incrementing strategies:

- constant increment $x_{i+1} = x_i + 0.1$, e.g.
- increasing increment $x_0 = 0.1$

After successful bracketing, need more sophisticated methods:—

Golden Section Search for single-variable unconstrained optimization of f(x)

Choose two special points inside the bracket:

$$x_1=b-Rh$$

$$x_2=a+Rh$$

$$R=rac{-1+\sqrt{5}}{2}pprox 0.618...$$
 Calculate $f(x)$ at x_1,x_2

Goal: successively narrow down the interval where f is minimized

$$R = \frac{-1+\sqrt{5}}{2}$$
 if $f(x_1) > f(x_2) \rightarrow \text{New bracket } [a, x_2]$ $x_1 = b - Rh$
$$x_2 = a + Rh$$
 if $f(x_1) < f(x_2) \rightarrow \text{New bracket } [x_1, b]$ a $x_1 x_2 = b$

Maximize $f(x) = \sin(2x)$ in the region [0,1]

Step	a	Xı	X 2	6	h	new interval	or [a', p]
0	0.0	$X_1 = 0.3819$	$f(x_2) = 0.618$ $f(x_2) = 0.944$	1.0	1	[x1,b]	
1	0.3819	$X_1 = 0.619$ $f(x_1) = 0.944$	$X_2 = 0.763$ $f(x_2) = 0.998$	1.0	0.618		