ENGR 21: Computer Engineering Fundamentals

Instructor: Emad Masroor

Lecture 21 Tuesday, November 18, 2025

Polynomial Interpolation

Finding a straight line through 2 points is the simplest kind of polynomial interpolation

 (x_0, y_0)

- Write down the equation of a line order (x_1,y_1) $y = a_0 + a_1 x$
- 2. Plug in the data points

$$y_0 = a_0 + a_1 x_0$$
 $y_1 = a_0 + a_1 x_1$

Solve simultaneous equations for the two unknowns

$$\begin{bmatrix} 1 & x_0 \\ 1 & x_1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$$

line: polynomial of first order. system of equations

known: (Xi, Yi) for i=0
to i=n

unknown: (ao, 9,)

Finding a straight line that goes thru

Use 3 data points to attempt a straight line fit to three points.

$$y_0 = a_0 + a_1 x_0$$

 $y_1 = a_0 + a_1 x_1$
 $y_2 = a_0 + a_1 x_2$

$$egin{bmatrix} 1 & x_0 \ 1 & x_1 \ 1 & x_2 \end{bmatrix} egin{bmatrix} a_0 \ a_1 \end{bmatrix} = egin{bmatrix} y_0 \ y_1 \ y_2 \end{bmatrix}$$
 Known which was a simple of the second second

Finding a quadratic curve that goes thru

all three points

order n=2

unknowns

1. Write down the equation of the curve 3 coefficients

$$y = a_0 + a_1 x + a_2 x^2$$

2. Plug in the data points ≤

eqns.
$$y_0 = a_0 + a_1 x_0 + a_2 x_0^2$$
 $y_1 = a_0 + a_1 x_1 + a_2 x_1^2$ $y_2 = a_0 + a_1 x_2 + a_2 x_2^2$

3. Solve simultaneous equations for the

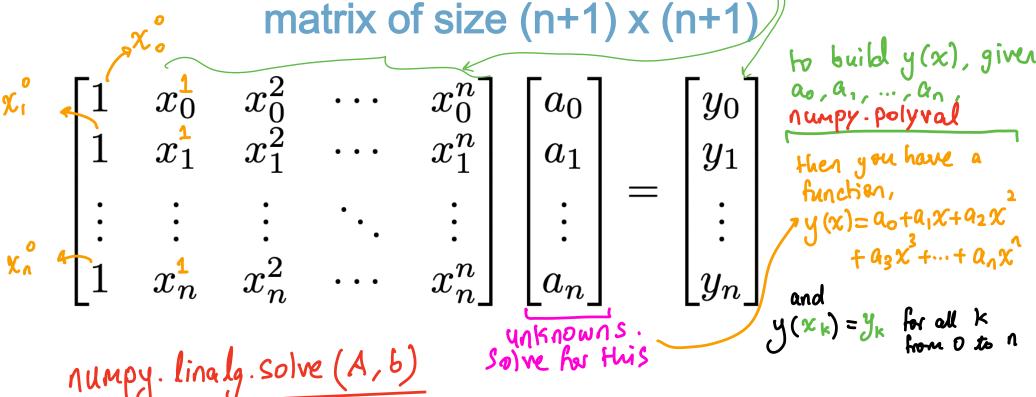
three unknowns

$$\begin{bmatrix} 1 & x_0 & x_0^2 \\ 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ y_2 \end{bmatrix}$$

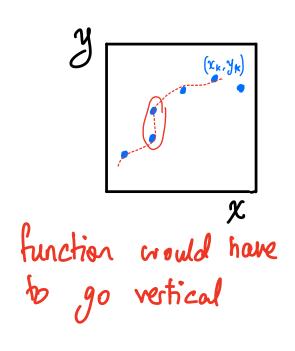
 (χ_o, γ_o)

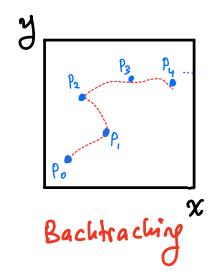
A polynomial of order 2 can "interpolate between" 3 points

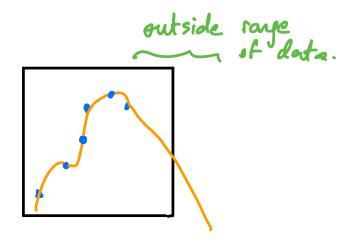
Knowns unknowns


 $A\overline{x} = b$

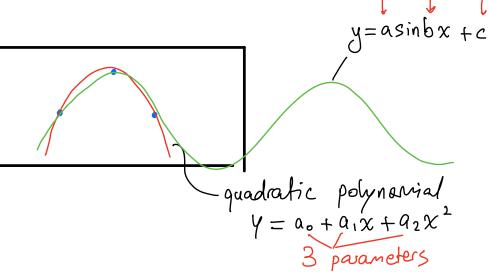
(x, y,)


matrix - vector equation can be solved with direct / iterative numerical methods.


Generalizing Polynomial Interpolation


You can (almost) always find a unique n-degree polynomial that goes through n+1 points using a

Potential Difficulties with Interpolation Matrices



- only works in the region where you have data.
- Bad idea to extrapolate

Totoridat Dimontalis with interpolation i facility

- Can also interpolate with other functions, not necessarily polynomials.

3 parameters

Interpolating Matrices activity

a single line of code that solves $A\vec{x} = \vec{b}$

- Download coordinates from course website
- Write code that:
 - Generates the interpolating matrix for these points
 - Solves a linear system for the coefficients
- How would you use these coefficients to write the interpolating function?

from numpy.linalg import inv as invert from numpy import dot

numpy. loadtxt X = dot(invest(A),b)

x	
1.0	
2.0	
2.5	
3.0	
3.5	
4.5	
6.0	
9.0	
9.5	

10.0

ENGR 21 Fall 2025