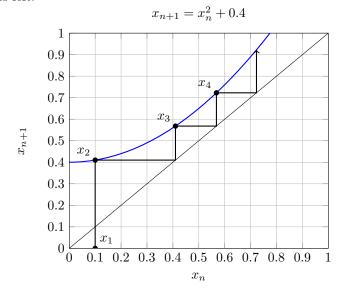
Cobweb Diagrams and the Logistic Map

In this exercise, you will be making cobweb diagrams. Let's review how to do this. Consider the map given by

$$x_{n+1} = x_n^2 + 0.4, (1)$$

starting from the initial condition $x_0 = 0.1$.

To *iterate* the map forward 4 steps — which you can think of as four discrete steps in time — it suffices to simply apply (1) to x_0 four times. The result is summarized in the table below, and visualized in the **cobweb diagram** to its left.



x_0		0.1
x_1	$=f(x_0)$	0.41
x_2	$= f(f(x_0))$	0.5681
x_3	$= f(f(f(x_0)))$	0.722738
x_4	$= f^4(x_0)$	0.92235

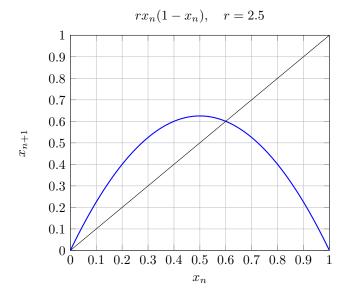
In-class exercise Page 1 of 6

Now consider the map given by

$$x_{n+1} = rx_n(1 - x_n)$$
$$r = 2.5,$$

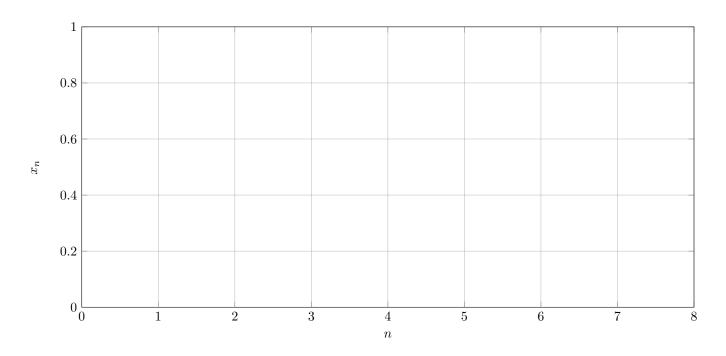
starting from $x_0 = 0.3$.

🙇 Fill in the following table, and draw the cobweb diagram for this map.



x_0		0.3
x_1	$=f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$= f^5(x_0)$	
x_6	$= f^6(x_0)$	

- \triangle How many period-n orbits, if any, are there in this system, and at what value(s) of x do they occur?
- \triangle What will happen to points initialized from values other than $x_0 = 0.3$?
- \triangle Plot x_n versus n on the following set of axes. What pattern do you notice?



In-class exercise Page 2 of 6

Now consider the map given by

$$x_{n+1} = rx_n(1 - x_n)$$
$$r = 3.1,$$

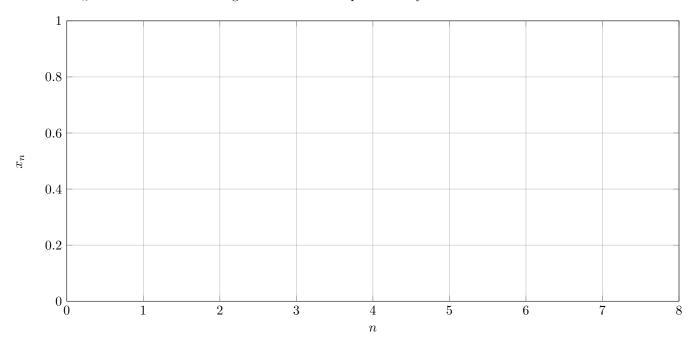
starting from $x_0 = 0.5$.

△ Fill in the following table, and draw the cobweb diagram for this map.

	$rx_n(1-x_n), r=3.1$		
	0.9		
	0.8		
	0.7		
_	0.6		
x_{n+1}	0.5		
G	0.4		
	0.3		
	0.2		
	0.1		
	0		
	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1		
	x_n		

x_0		0.5
x_1	$= f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$= f^5(x_0)$	
x_6	$= f^6(x_0)$	
x_7	$= f^7(x_0)$	
x_8	$= f^8(x_0)$	

- \triangle How many period-n orbits, if any, are there in this system, and at what value(s) of x do they occur?
- \triangle Does the solution tend to a particular value ?
- △ What will happen for other initial conditions?
- \triangle Plot x_n versus n on the following set of axes. What pattern do you notice?



In-class exercise Page 3 of 6

Now consider the map given by

$$x_{n+1} = rx_n(1 - x_n)$$
$$r = 3.5,$$

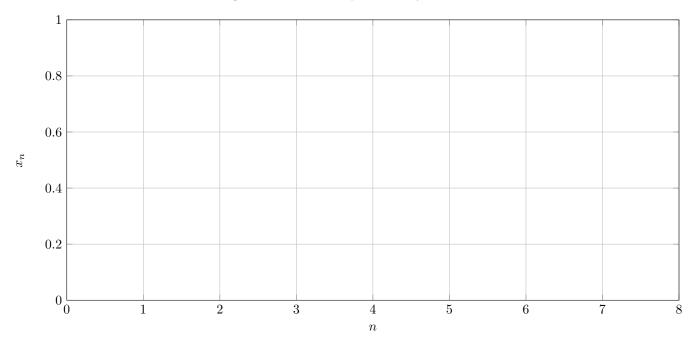
starting from $x_0 = 0.5$.

△ Fill in the following table, and draw the cobweb diagram for this map.

	$rx_n(1-x_n), r=3.5$		
x_{n+1}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	ωn		

x_0		0.5
x_1	$=f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$= f^5(x_0)$	
x_6	$= f^6(x_0)$	
x_7	$= f^7(x_0)$	
x_8	$= f^8(x_0)$	

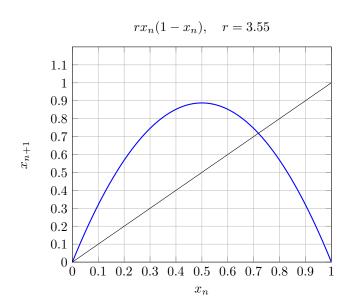
- \triangle Are there any period-n orbits, in this system, and what is the value of n?
- △ Does the solution tend to a particular value?
- △ What will happen for other initial conditions?
- \triangle Plot x_n versus n on the following set of axes. What pattern do you notice?



In-class exercise

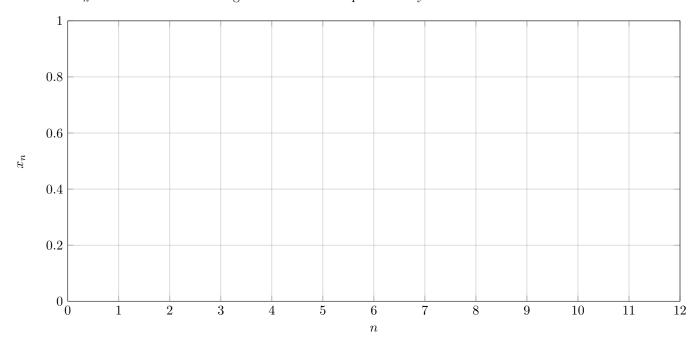
Now consider the logistic map with r=3.55. This time, you will iterate the map further.

△ Fill in the following table, and draw the cobweb diagram for this map.



x_0		0.5
x_1	$= f(x_0)$	
x_2	$= f(f(x_0))$	
x_3	$= f(f(f(x_0)))$	
x_4	$= f^4(x_0)$	
x_5	$= f^5(x_0)$	
x_6	$= f^6(x_0)$	
x_7	$= f^7(x_0)$	
x_8	$= f^8(x_0)$	
x_9	$= f^9(x_0)$	
x_{10}	$=f^{10}(x_0)$	
x_{11}	$= f^{11}(x_0)$	
x_{12}	$=f^{12}(x_0)$	

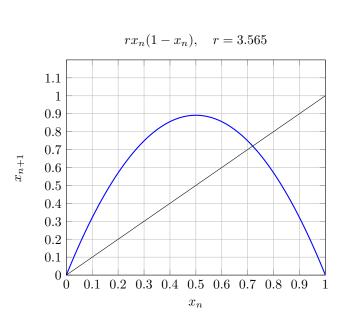
- \triangle Are there any period-n orbits, in this system, and what is the value of n?
- △ Does the solution tend to a particular value?
- △ What will happen for other initial conditions?
- \triangle Plot x_n versus n on the following set of axes. What pattern do you notice?



In-class exercise Page 5 of 6

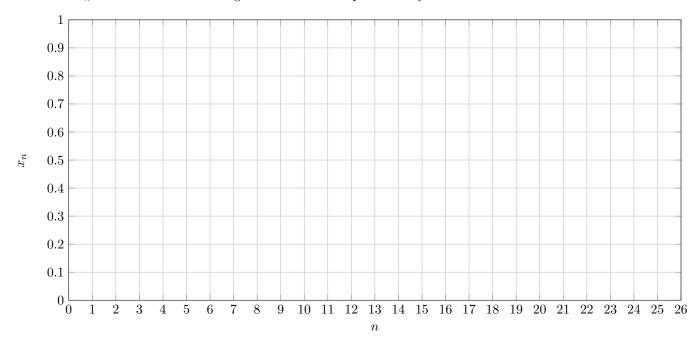
Now consider the logistic map with r = 3.565. This time, you will iterate the map even further.

△ Fill in the following table, and draw the cobweb diagram for this map.



-0	_		
x_0		0.5	x_{13}
x_1	$=f(x_0)$		$ x_{14} $
x_2	$= f(f(x_0))$		x_{15}
x_3	$= f(f(f(x_0)))$		x_{16}
x_4	$= f^4(x_0)$		x_{17}
x_5	$= f^5(x_0)$		x ₁₈
x_6	$= f^6(x_0)$		x_{19}
x_7	$= f^7(x_0)$		x_{20}
x_8	$= f^8(x_0)$		x_{21}
x_9	$= f^9(x_0)$		x_{22}
x_{10}	$=f^{10}(x_0)$		x_{23}
x_{11}	$=f^{11}(x_0)$		x_{24}
x_{12}	$=f^{12}(x_0)$		x_{25}

- \triangle Are there any period-n orbits, in this system, and what is the value of n?
- △ Does the solution tend to a particular value?
- △ What will happen for other initial conditions?
- \triangle Plot x_n versus n on the following set of axes. What pattern do you notice?



In-class exercise Page 6 of 6