						Wed	, Jan	22	Lect	ure l	

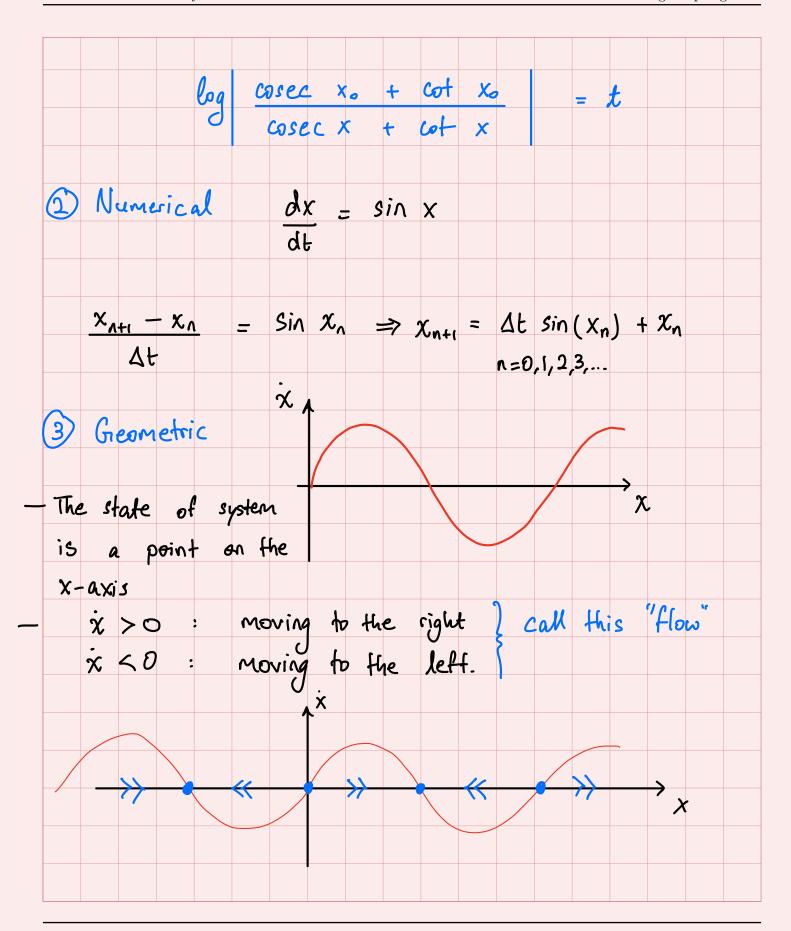
Definition.

Determinism is true of the *world* if and only if, given a specified *way things are at a time t*, the way things go *thereafter* is *fixed* as a matter of *natural law*.

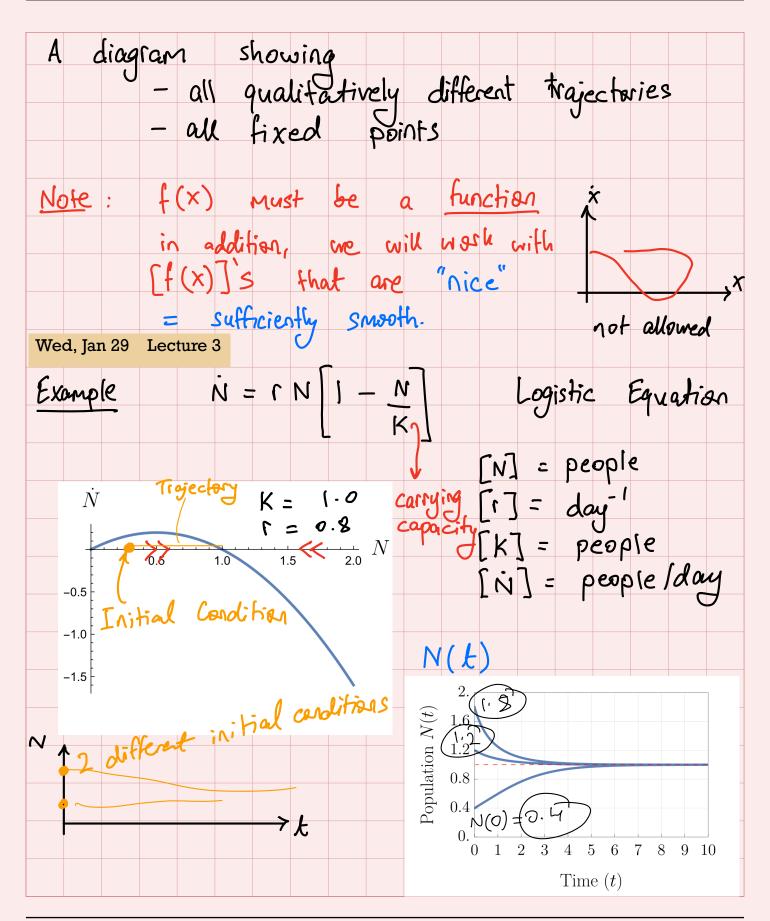
(Stanford Encyclopedia of Philosophy, Entry on Causal Determinism)

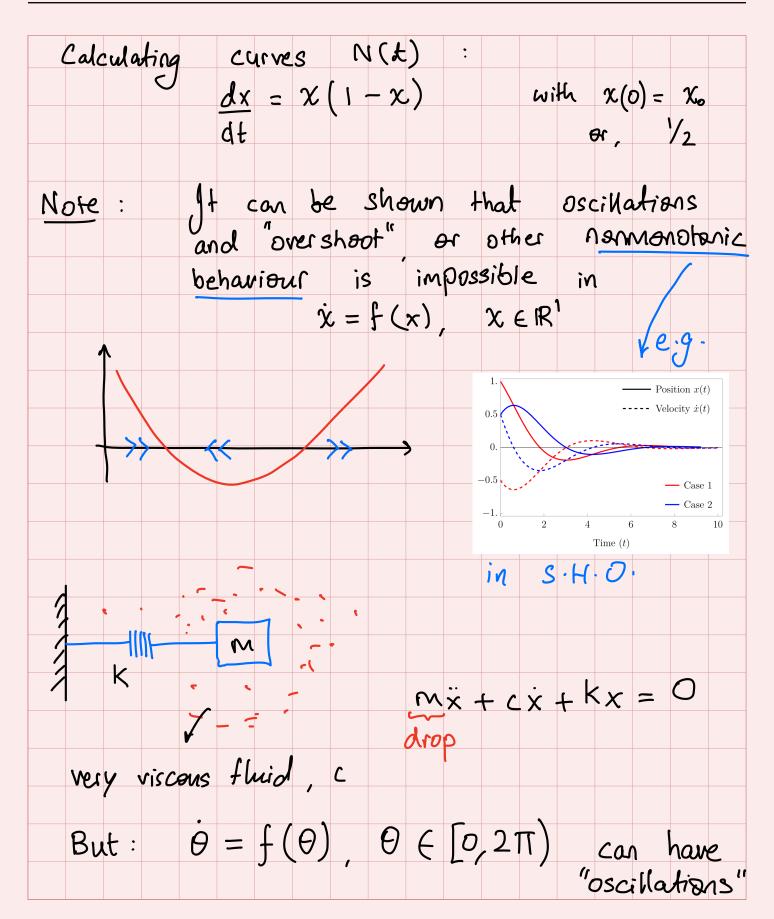
Laplace's Demon.

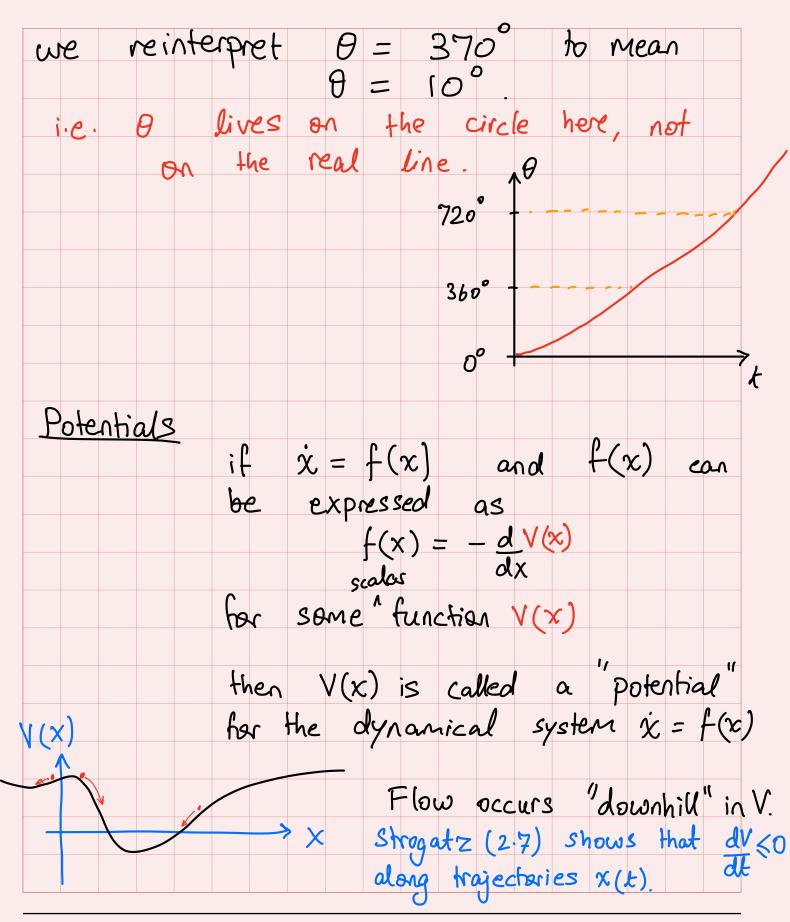
"We ought to regard the present state of the universe as the effect of its antecedent state and as the cause of the state that is to follow. An intelligence knowing all the forces acting in nature at a given instant, as well as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world, provided that its intellect were sufficiently powerful to subject all data to analysis; to it nothing would be uncertain, the future as well as the past would be present to its eyes. The perfection that the human mind has been able to give to astronomy affords but a feeble outline of such an intelligence. Discoveries in mechanics and geometry, coupled with those in universal gravitation, have brought the mind within reach of comprehending in the same analytical formula the past and the future state of the system of the world. All of the mind's efforts in the search for truth tend to approximate the intelligence we have just imagined, although it will forever remain infinitely remote from such an intelligence."


(Essai Philosophique sur les Probabilités)

Principle	of Suf	ficient Reas	70 - Leibniz
"Free Will	is an illu	nsion"	- Spinoza
Heisenberg	Uncertain	ty Principle	
Gödel's Jo	completenes	s Theorem	


	•		r	(1							^				
	X	=	+	(x)	,t,)		A.				X	ER			0		
<		_					2	^	Cha	ros	دن	in	1009	ssib	le	if	∧ ≺	۲>
(X (0)	=	χ,									•					
	To	5	olv	و"	H	vi S]	VP		Me	on:	3	to		fin	d		
	a		fun	chi	21			(k		H			sat	75 7	he e	d s U	l)	
								("	/									
		_	an	alu	tic	a /	9	رارد	fi	Q N	2		us	e	M.	4T	Н	
			Λι.	300	ric	~ <i> </i>												
			'(0	(4-(6	<i>,,</i>	~	,	NO C	lto c	an	7		us	C	W.	npu	(Ju	
	1		_ [.,	L'a								Co.	_	01	L		P	
		>2		770	11	VC	ran		2 XI	ST		(a)	q		1	<i>\int</i>	\	
	81		104		٨	_	sub	set		0+		R	Nσo-	n Tou	07	Tast	0	
	•			•				^	_				IATOI	n, Jar	1 41	Lect	ure 2	
	X	= {	(x,	<i>t</i>)			:	fie	72	-01	der							
	ÿ.	= f	(x,	χ,	t)		:	2	2									
					 × , k	.)	÷	3	rd .									
	→ e	_	X		=	••				χ̈́	= f ((x, i	· · ·) :	au	tono	MBU.	S
		J		່ວ)	=	•				Ä:	= [(X. 5	c. f	:	ท อ ก	auho		
			 % (=								,	,				
			<i>N</i> (-)														


Equivalence	of	1 <u>4</u>	order	di	fterer	tial	egua	tions
Equivalence and a sys	stem of	1	15t 01	des	.,	,	"	
$\frac{d^2x}{dt^2} =$	f (x, s	(X	$X_{(3)}^{\prime}X$	(')	, X	()		
dt"								
it is alwa	ays pos	rible	ho	ωſ	ite	an	ecui	valent
it is always	F n 1	st ou	rder	equ	atis	: و١	1	
				•				
Define y	e R^		ÿ, =	92				
			ÿ ₂ =	y3				
			ý ₃ =	94				
			yn-1=	= Yn				
			ý =	f (y,,y	2, 43,	····)	
4								
Any dynam	ics po	obler	n Car	be	2 W	iribten	45	
جس م جيز				ſ	7		ſ÷	
$\vec{x} = f(\vec{x})$,t)	Wh	ere x	= ^ x		%	= ^1	
			ere X	x	3]		$= \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix}$	
								7


	· X	=	f (x)				χ	iR"									
X	(o)	=	χ,													^	χn	
	•															(
	is	lic	ear		if	i	- (con	be	<u></u>	ritte	<u>_</u> 1	as	×	, =	Aχ		
		Ŋ	- 1	, l	ineo	J	-				>	ina	eas	ing	•	\		
												\sim			7			
												chad	15	live	s)		
	(וחבת	easic	19	1 <i>8</i> 1	linea	rity				7	her	<u>e</u>		_			
)			O						∩ > >	×1	,	an L	inea	V
1 :	= 1	,	Nev	lin e	eas											(Ov)		
					si				\longrightarrow	al	haly. une	tica	l	:	X(k)	fund	: fion
			メ (o) =	χ					7'	ume	rica	l	;	f ti	, X	}	
										g	eom	etri	د					
(C)	A		1.			J												
	4	nalu	ltic	ol		$\frac{dx}{dt}$	=	Si	n	X								
						UT		roc.	0 C	γ.	dх			L				
							J	WS!		~ (1	=	Ja	b				
USO	9	, = {), x	(=	X _o		- la	a \	COC	e.c	X	t	Cot	×	+ (<u> </u>	. <i>}</i>	
to		nd					(J				•					70	

Swarthmore College · Spring 2025

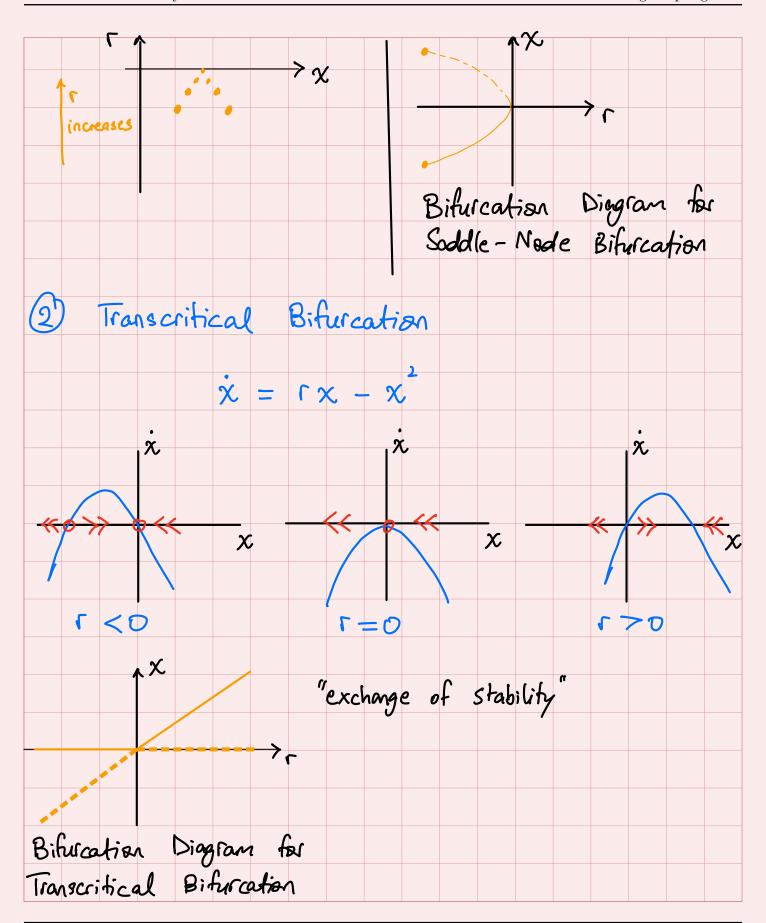
f(x) =
$$2x$$

f(x)

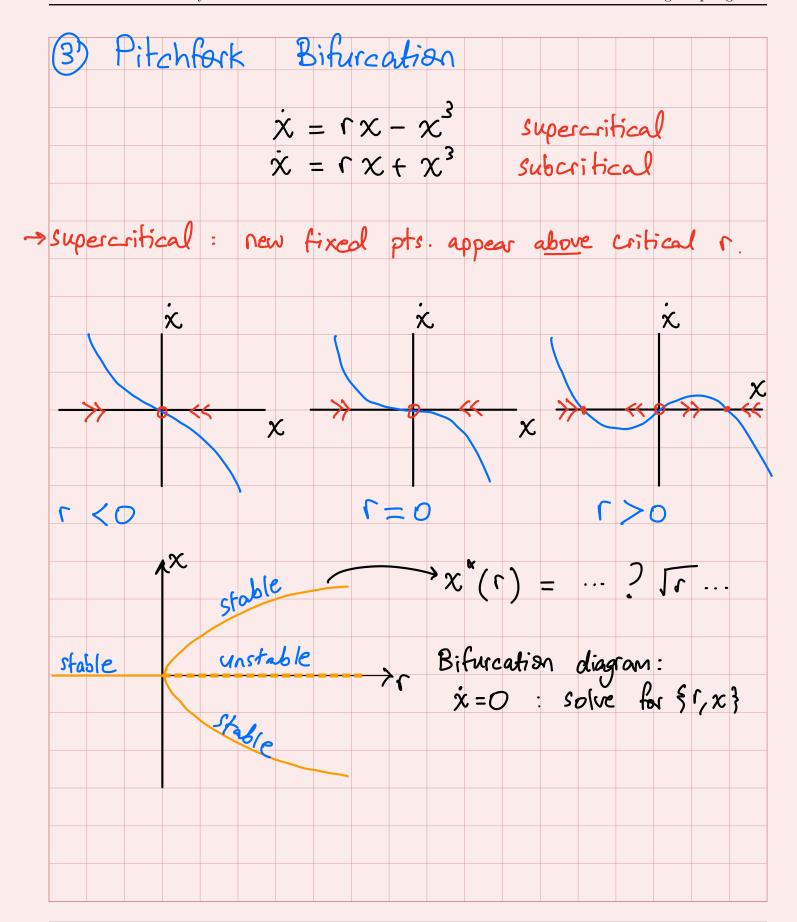
f(x) = $-x^2$

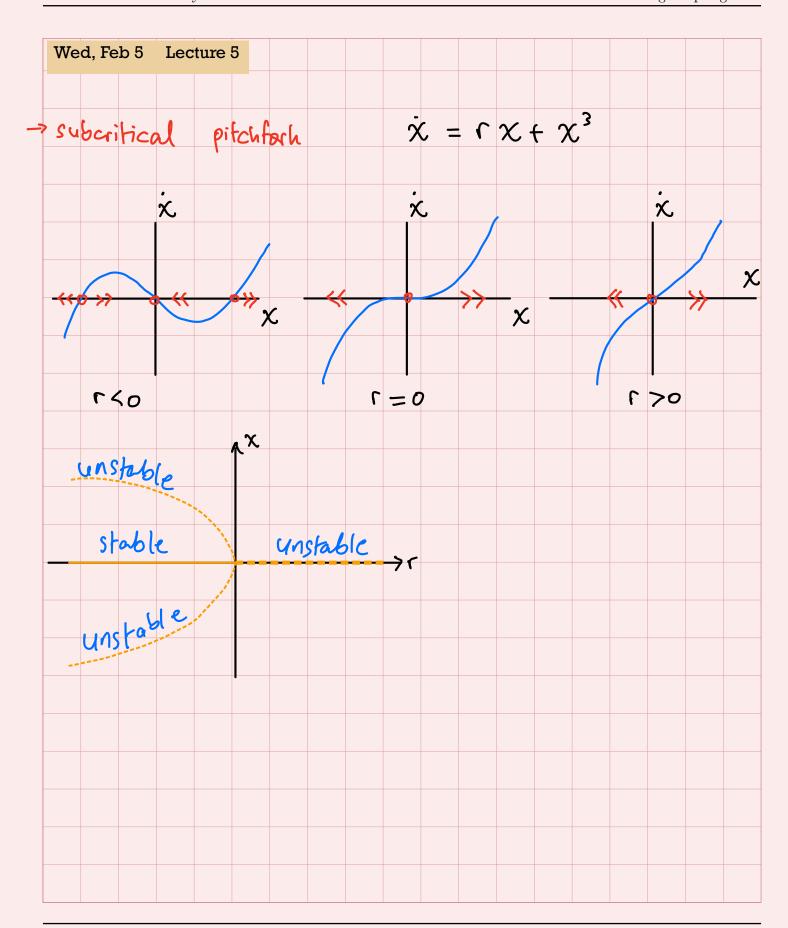
Linear Stability Analysis of fixed points.

Suppose x^* is a value of x where $f(x^*) = 0$

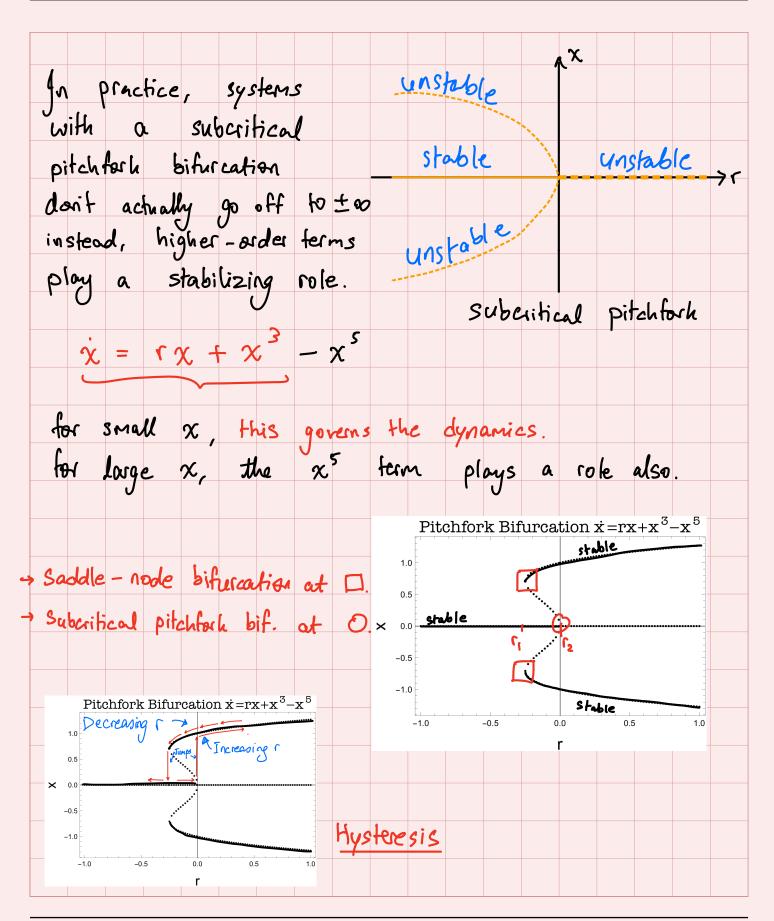

What happens to x if it is initialized close to x^* ?

Let $\eta(k) = x(k) - x^*$
 $\dot{\eta}(k) = \dot{x}(k) - 0$
 $\dot{\eta} = f(x) = f(x^* + \eta)$ use Taylor series assuming η small.

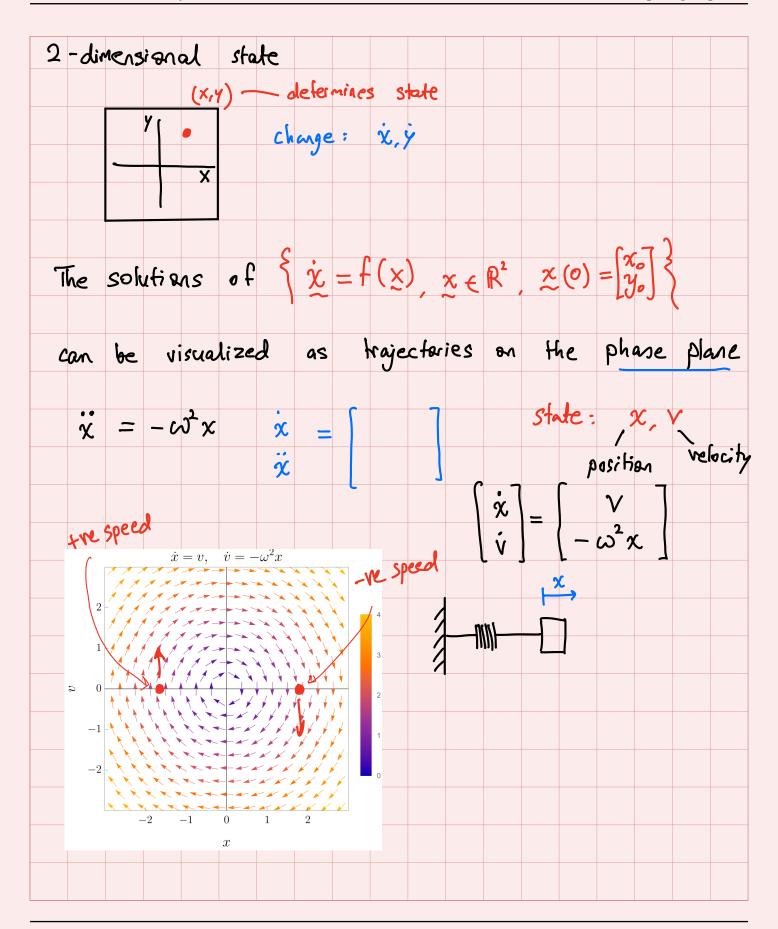

 $f(x^* + \eta) = f(x^*) + \eta f'(x^*) + \eta^2 f'(x^*) + \cdots$
 $\dot{\eta} = \eta f'(x^*) + O(\eta^2)$

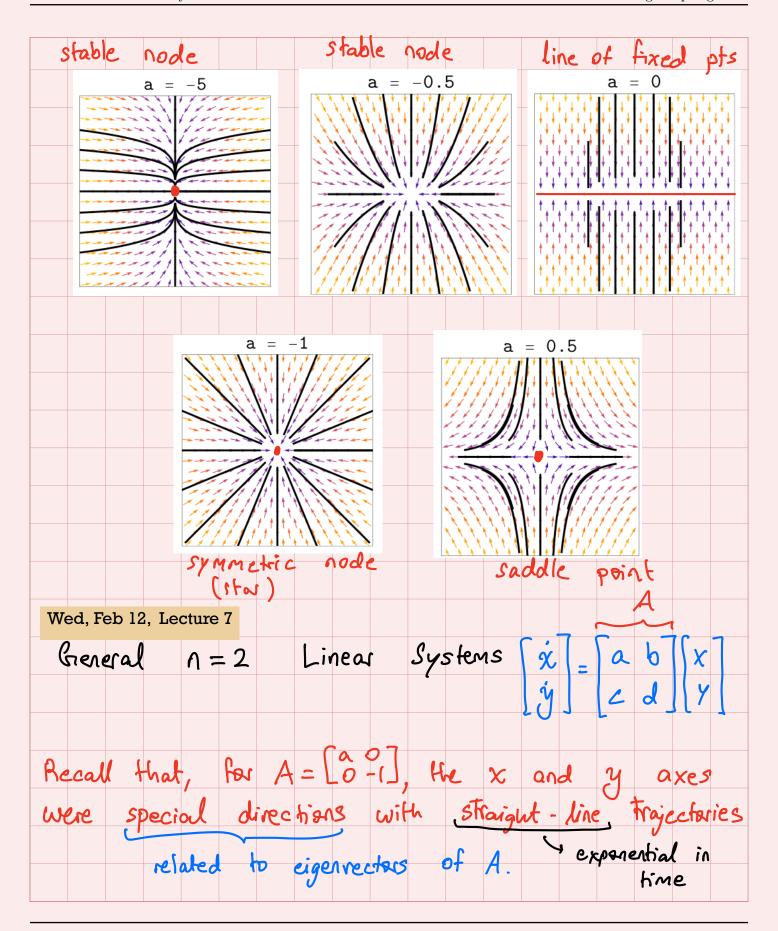

const. number

E	10	lut	ion	•	gu	ati	21	, k	for	S	Ma	U	P	ert	ure	pat	cture	1
7		au	Joy		408	M :	des	si.	ent	Va	iable	2	M	on, F	eb 3	Le	cture	4
1	3if	W	<u>Ca</u>	i 8	20	_	X	, =	f	(x	; [M					
	Le!	,	the	2	S	yste	M	لح	re	ρ	ora	Me	teriz	ed		by		
	810	2	ક્ત		ŕ	اهر	<u>,</u>	Po	sar	refe	rs	1,	١	He	W	dæ	20	
	the		9ua	lita	ztiv	و	be	hau	ગોભ	cf	0	^ -	the	. 5	yst	en		
	Chi	ng e	2	٥	sifh		1)						•			
		So	rqq	le ·	- 1	lod	e	Bi	fur	cas	ier	\						
		· ·		7	· C	2						0 -	dim	200	`0 ^ -	0		
		√	=	•	7	Υ.					_					ጎ የ		
		•						•					010					
		ż			7		(×	(118	4111v	rea	J .			1	
											/							
<i>→</i> >	9	**	-<		χ			·		→		_ ×		>>	-	(a)	>	-
							Slow	dow	1							ghos	7	
1	く つ						1	=0					()	>0				

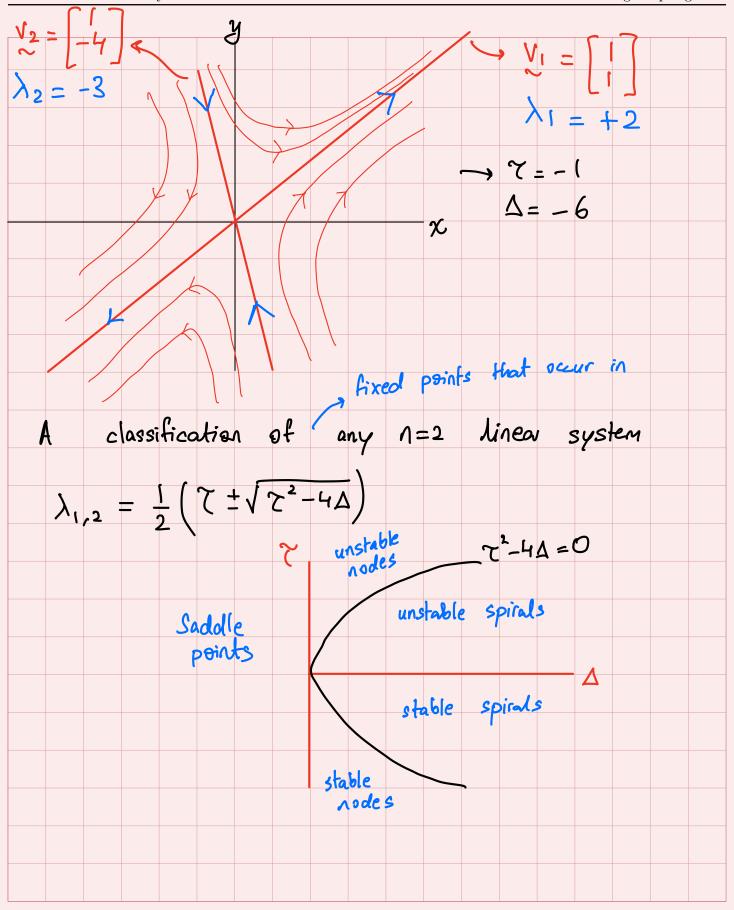


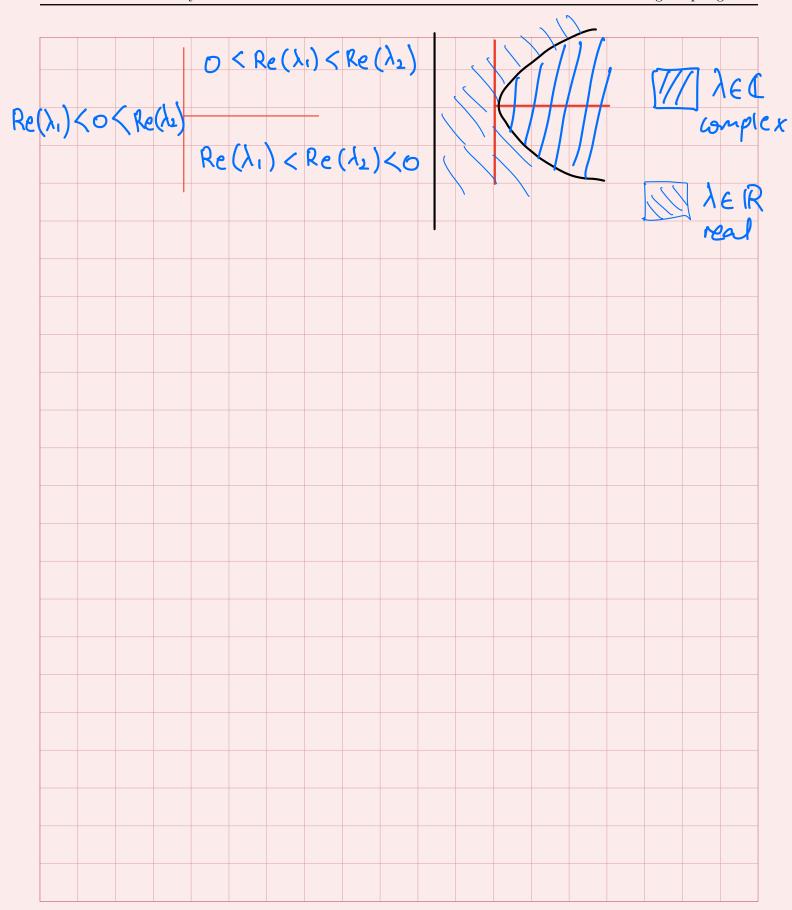
				S	rve:	Cı	? /\	rtie	urce	Bif	e	lat	lcu	ca	to	J	184	+
						(A)			X	h	tar	٢	+	X	_	=	χ	
1-7	~ ⊁ '	L(اء															
)=0	^																	
			•	r	ter	me.	ora	P	a	1	ha	0	als	f	•	ere,	He	
	,,																	
•	.	•																
				1 .	then	+ -	Pla		irs.	Pa)	, (?	X×	5:		ves	G	
			d.	han	,	by	B-C		ram	coa	3 K	dina	fine	00 1.	r	oith	y c.	
						/												
										A)	(,	M	ste	Sy		hou	g.	e.
		X K	2	for		X	h	ta	٢	+	· X	-) =	6	re	olv	5	
						ve.	Val	<u> </u>	BM	3	to	1	ng	effi	- 3	fter	Q.	
	N	X	_	•		1		Ma	vo l		am e	C	h	7	Q	ef	S	
X		tan				7110		12/	100			3						
	<i>X</i>	x*	d .	han	Hen	t .	Ple	tau	ram	Par (cog) A)	(- x*	ding	x* -final stea		re s	oith	g.	



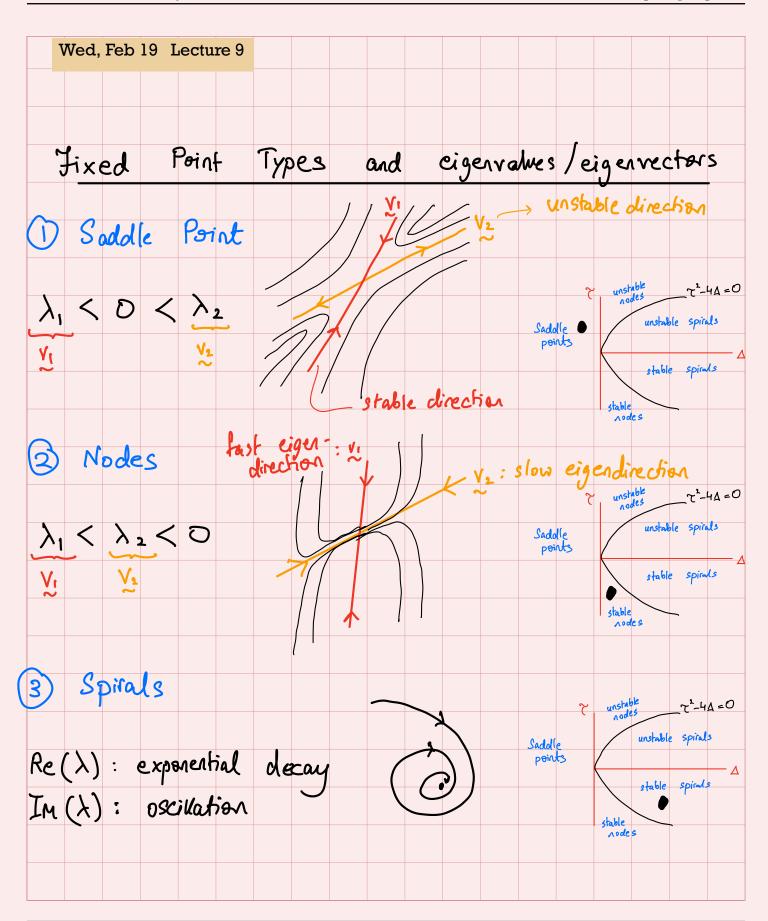

	$\dot{x} = f(x;r)$	r <0	r>0
Saddle-node	$\dot{\chi} = \Gamma + \chi^2$	1 stable	None
T		1 unstable	None
Trenscritical	½ = Γ χ − χ ²	1 stable -	+ 1 unstable + 1 stable
Pitchfork:		I WISTANIE) I stable
Supercrit.	$\dot{\chi} = \Gamma \chi - \chi^3$	None	→ 1 stable
		1 stable -	- 1 unstable
		None -	+ 1 stable
subcrit.	$\dot{\chi} = f\chi + \chi^3$	1 unstable -	- None
		1 stable -	1 unstable
		1 unstable	-> None

I	Mon,	Feb :	10 L	ectu	re 6													
	She	οω	th	at,	6	siHh		app	ത്മ	iate	<u>-</u>	<i>૧૦</i> ૫	-di	<u>પદા</u>	Si Q/	rali	za	tien,
	ù		a	u	+	Ь	u³	_	<u> </u>	u	Ç	S	equ	ival	ent		to	
	ý.	Ξ	٢	×	+	X	3	_	X				wher	-e '	· =	$\frac{dx}{dx}$; 	
		U	=	\b/	<u>'</u> C									u/ = t				
		T	n u	0.0	(6 ² :/b	2							ፖ : -	= <i>t</i>	/7			
	yn o				ith		1	1	2									
		×	=	f	(x	.)		3	K	R								
(a	n ren!	i go			he		te			be	W	rille	Λ α	λ S				
<u>_</u>		.,,												٤:	t	is	a	
			Χı		0 -	ſ	X		91	25				T	valu	ed	fun	ctian
			\ X ₂				У						of	a	wed	ter	asgi	wert.
1	-di	رور	sien	al	3	stat	e	4							avial →	le	defe	rmine) le
											(chan	ge:	×				

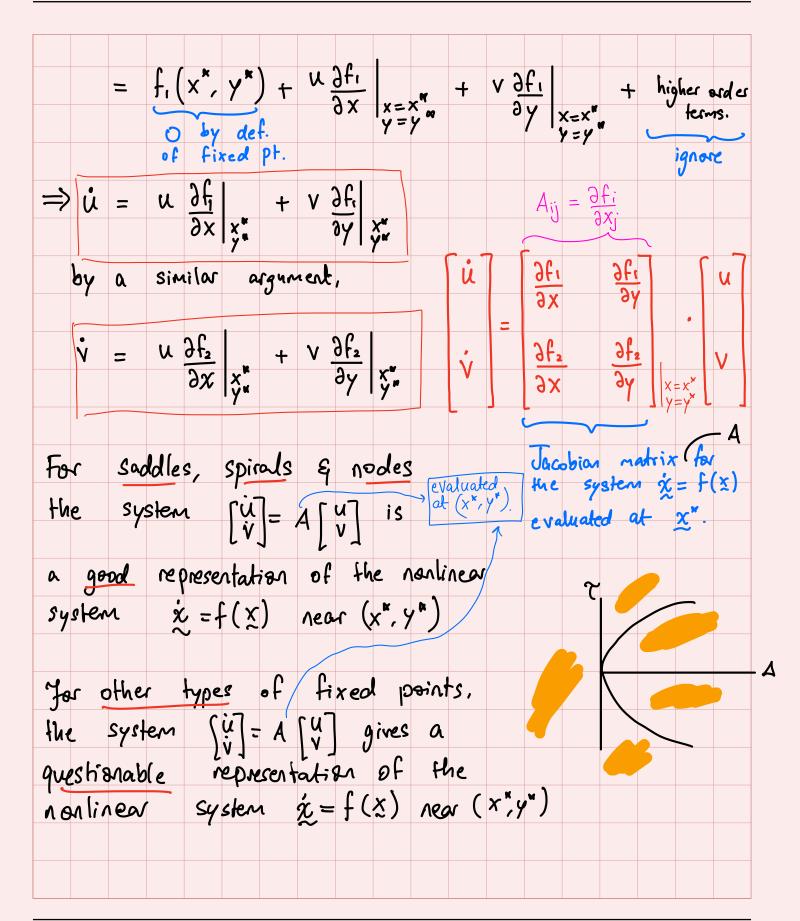

\rightarrow	ż	ìs	a	N	ecto	บ	wif	-h	2		CON	ipen	ent	·s ,	d	lefin	ed	
	7	fa	J	 ልባሃ	p	oin	+	()	x,y)	9	8A	, ł	he		pla	lefin ne .		
		1.6	2.	χ̈́	'	S	a	•	recti	N.	fiel	d						
→	<u>I</u> t	ajea	iust:	es	a	e	47	χ,((t)	, χ	ے (.	t) i		fu	inct	iens	3	of
	fic	йe		para	λM€	z-feci	20	d	60	/	Hh	e	jn	itia	l	con	olif	of isn.
	e ₁	`	num	eric	ally	١,	вı	dei	red	ε	oir	S	pa	ram	ete	īzec	J E	y k
->	Ti	Taje	cta	rics	0	ire	e	very	wh	ere	+	ang	ent	ł	' ס	vect	Br	field
_																		
	if	f	(×)	is		line	α,		wi	fher	ct	loss	ડે દ	of	ge	eal lele	ity	
	we	C	an	e	xpn	ess		ż	=	f (;	ž)	on 5	;					
		,		A				۲.	7	7.		7 ٢	7		7	ble	•	
		X	=	A	<u>X</u>			Χί Χ'n	=	Au	A12	•	X ₁		>	\(= \)	<i>ີ 0</i> ວ	7
				icula					1 1			, C				dwo		
	Ster		,,,,		•			Ĺ]_	ſα.	o	\[\	7		1	fix	jed	pf
							1	L	=		-1][
į.	=	a x		_	→	x ((t)	= 5	م ۷ <u>،</u> و	t								
ġ	=	- y				y ((+)	=	y, e	-t								

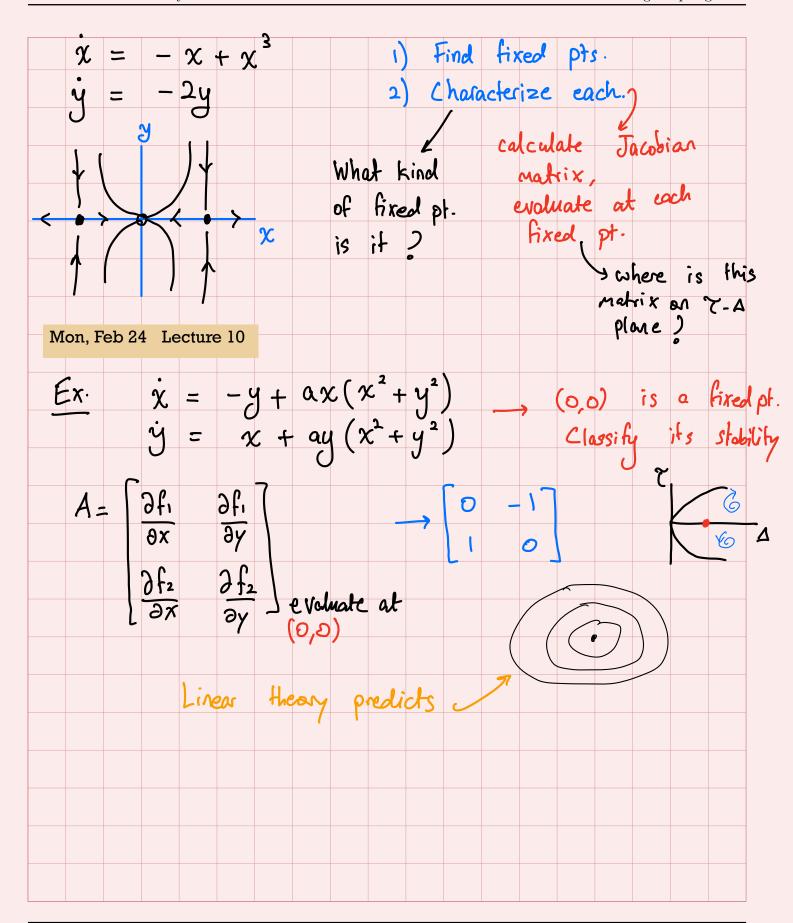


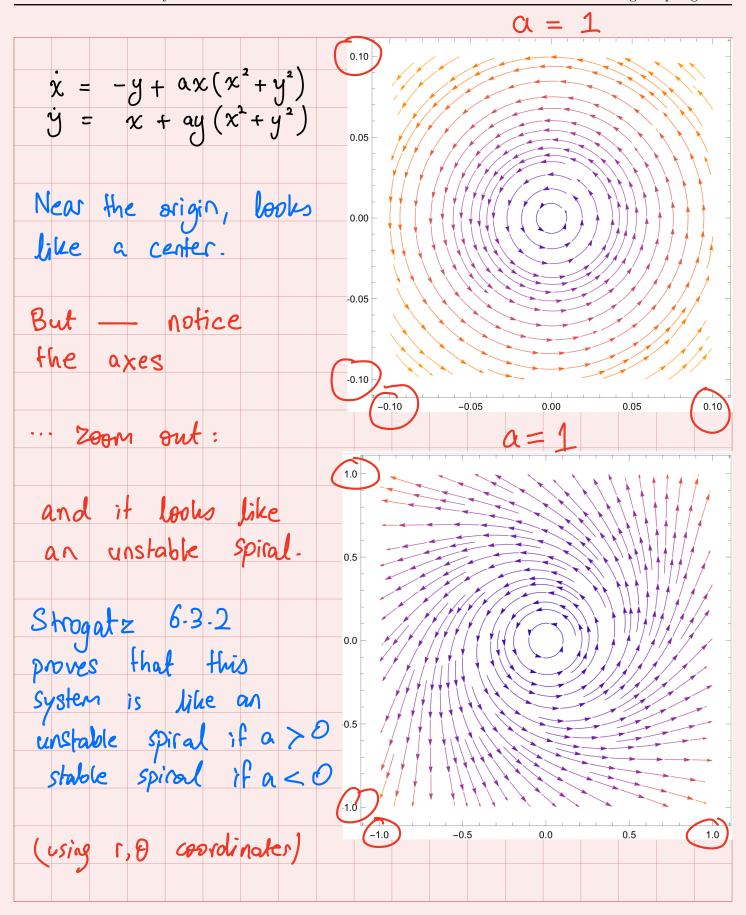
Are	there	such	Wai	ject	nics	f	พ	gen	eral		A	?			
		chaus												2	
		there					-				A .				
	X	(k) =	e	7.	٧	6)			×:	= A	x			
										~		~			
	λ	₹X¥ ×	= ,	Ae/	/t V										
		~			~										
		λy	=	A	٧			:	λ	eig	envi	dies	of	A	
												ecto			
d	of (A	$-\lambda I$	=	0					~	J		_			-
									A	- λ	I.	= [a	$-\lambda$	Ь	
(a	$-\lambda$)(δ	l-λ) -	- cl	6 =	= C)						= \	- 0	X - X	
,	_	- \d +										f-r			
		d) \ +										d			
	tr	(A)	de	,f (;	4)	A)			· ·				- 110	
			CIC		,	4									
λ	<u>-</u> 7	λ + Δ	=	0		Equ	atio	n f	er J	eige	enva	lves	of	4	! .
						Note	٤ :	B U	ce .	you	Kn	આ	λ	iŁ	iS
λ	= ~ ±	√2-4,	4									lculo			
		2				·	,					for			wo


As	le	019	as		λ_{l}	#	λ_{2}		an	y	sta	æ	of	1	he	sys	ster	ı
<u>X</u> :		0 /	Can	٨	be	C	ari t	ten	9.	S	a		nea	5	Co r	nbina	atie	M
of		the	2	eige	nve	Cfa	21	٧ٍı	an	d '	٧ <u>ء</u> .							
										n		_						
		X	=	aı	χί	+	Q ₁	V₂ ~		fer	ی	cal	a s		a	an	d	a ₂ .
		W (/ \			111.7		<i>C</i> .		,								
		<u>ک</u> (k)	=(0	λ, (t	}}\v	+	(a ₂	(<i>k)</i>)	V2 ~								
1 0					21	_ (٠		[]		c . 1	000		09.			1. 4	
AS		<u>x</u>	Vari	હ	9Ve	ζ ,	hme	1	tnes	٤ :	Scar	OT.2	γο					9
000		f'c	pos	sihl	e	т	escif	٠.	0	4	en esa	ત્રી .	solu	hi ex	111	fim	e.	
															~	V(L)		
154			6										•					
		x ((F)	13	C	λ, t e	٧٢	+	C	ر رو	2.t 	اء		→	λ'ς	, 义s	an	2
		~ \			•		~									enva	_	
No	S	<i>iuch</i>	9 <	nera	S	olut	19-11	ex	ists	for	ż	= F	$\frac{2}{2}(x)$		_	erve		
if		h	is	not		linea		in	X						د'ح	an	e u	enst.
															Loef	hicied	uts	that
Ex	erc	ise		Se	lve		ż	= 9	X +,	y	X	_o = 2	2					initia
							ġ	= 4	$\chi - \zeta$	2y	7/	';= -	-3		Cara	itie	1 %	(0)
•							<u> </u>	- 1										
X	= /	4x		ith			[4		~ `		~	=	-1	, 4	7=	-6		
	Fil	57,	4	rol	(eige	~ Va	lve	s.									

$\lambda^2 + \lambda - 6 = 0 \Rightarrow$	$\lambda^{2} + 3\lambda - 2\lambda - 6 = 0$ $(\lambda + 3)(\lambda - 2) = 0$
Then find eigenvector	$\Rightarrow \lambda = 2, -3$
$A u = \lambda u$ $= 2$	
$\begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 2 u_1 \\ 2 u_2 \end{bmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	=> $u = []$ one eigenvector, associated with $\lambda = 2$
similarly	is the $2^{\frac{nd}{2}}$ eigenvector associated with $\lambda = -3$
$x(t) = c_1 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\begin{array}{c c} + & C_2 & e \\ \hline & - & \\ & & \times & = \begin{bmatrix} 2 \\ -3 \end{bmatrix} \end{array}$
$\begin{bmatrix} 2 \\ -3 \end{bmatrix} = c, c \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$+ c_2 e \begin{cases} 1 \\ -4 \end{cases} c_1 + c_2 = 2$ $c_1 - 4c_2 = -3$
\(\frac{1}{2}\)	$+ e^{3k} \begin{cases} 1 \\ -k \end{cases} = \begin{cases} 1 \\ 2 \\ -k \end{cases}$
$\frac{\chi(t)}{\sim} = e^{-\frac{t}{2}} \left[\frac{1}{1} \right]$	

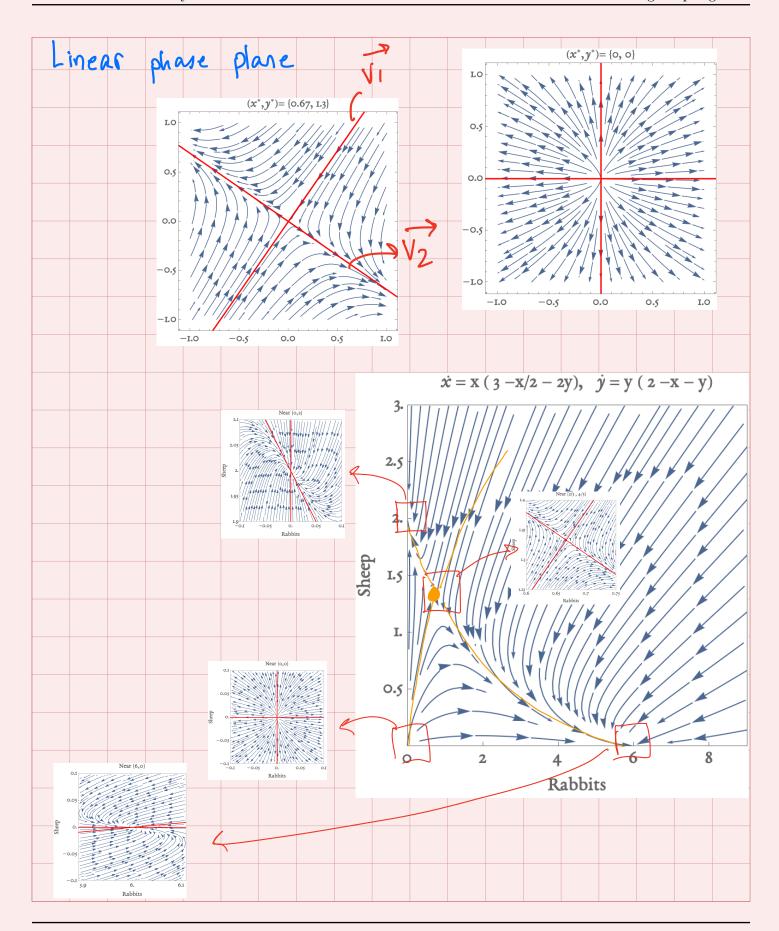


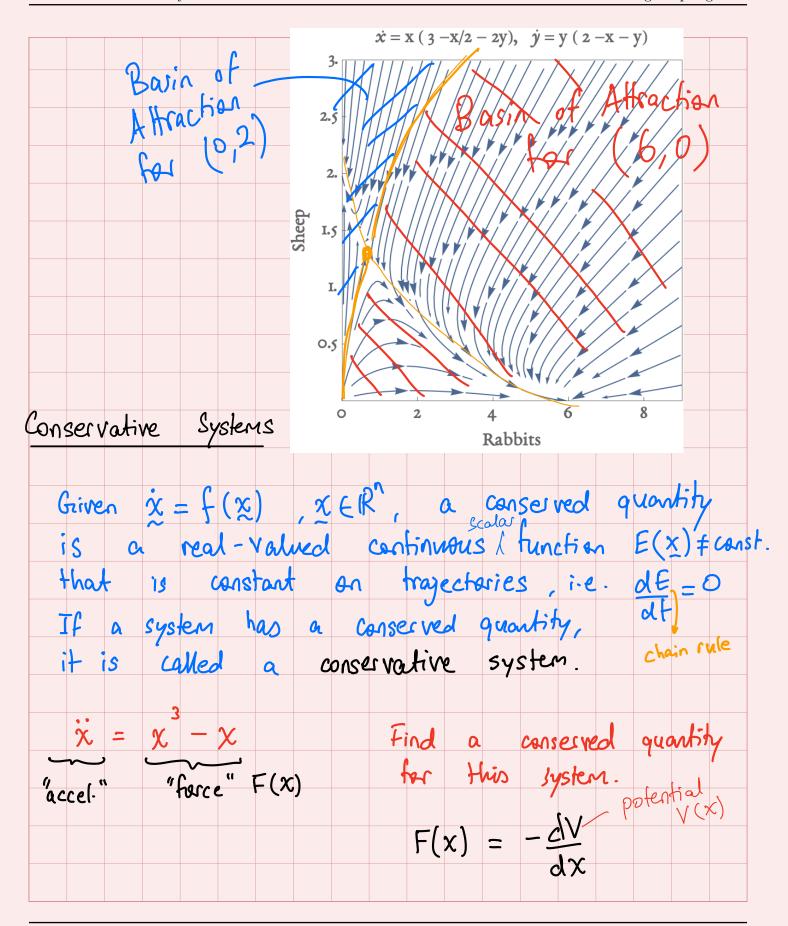

	Mon	, Feb 1	7 Lec	ture 8			Re	me	5	i J	ulic	t					
															7	onstan	Jt s
			t) :			R			_ F	+	- L		. J		+	2	
		J (1	t) :			J	=		f	2 4	` L		J		+	7	
		, ,) (°	7			7								
		x =	a	ь 4)		+										
		ÿ		d		1											
			Con	stants				Co	~ nsta	its.							
													له	tve		love	
R		Rom	, , , , , , , , , , , , , , , , , , ,	la		/1.	- L -	C		Τ.	die	L		٧٤:		nute	
J						/h					mei						
Q	:	Tulio	SL)) Jo	ve	J ho	ve	1 0	~	1/8	ME	y					
(a)	te of	cha	46 (of f	\	dep	ends	6	~	Val	ve e	of	R				
						•				/;		r,	J				
						10	<u>T</u>	0 -n	ſ	ate	of	اے	onge	of	R	, J.	
					4	Ro											
χ	=	+ x	1 2	y		100		1		7100							
X X X	=	+ x		y													
	=	- X	+	y													
Ř	=	- X	_ (4													
X	: (the Hly	love	4													
y	. (Hues	र	ne													



	The	2	pha	se	ام	ane						1 anli	nea	ſ	W.	= 2)	
					•						`							
	χ	=	f	$\left(\stackrel{\chi}{\approx} \right)$)				X	=	t'(\x,	, x	2)				
									% :	2 =	f2	(x_i)	, χ	2)				
اسا 	near					•	٧ _۱									Na	nline	~
																7		
									`				• • •		(
										•	X	1					K	
							√ 2 ~				X	K.			/			
							~				,		-					
			_							•								
			ectou		•	nt				^	eige	enve	ctor	5	do	not		
			ictur		oF	the				۵2	ptu	re	91	oba		pich	ne.	
pho	Me	Pl	ane	• •														
<u></u>	•			•	•		-1	_										
te	atun	es	0	•	ph	ase	PI	ane	:									
	V	2.	0					1:	· L		C	t. La	5.00	ſ,	(b)	۸		
<i>—</i>			ed •	•					i brit									
			2d															
-	В	eha	18 i v	0									3	Ę	C(os	ed	อาค	its
						aka	+	raje	ecta	rie		4	1:	00:		1		
						in	fh	is	COI	(tex	rh.		411	ear	26			

Ca	MSid	Jos		ż	_	X	+e	4			ر ا ا	ַ ל	<u> </u>	y 4	- y ²	_ Y	3	
	""	<i>1</i> 01		ÿ	=	-y									2!	3		
						0			-4					- 4				
- f	rind	fi	xed	pł	:	D	= 5	X+1	e'	=>	y = 1	ອ, ເ	X =	(
			7			D	= .	7					×*,	y*)	=	(-	1,0)
			0							•								
										X		χ 1	- \	- y		a t	ot in	ative
										y				7		/NI	Der 1	
/										Del	rine	χ	41		» (2	()		
C .										χ̈́	=	x'	'	1				
X		=	1	-	(]	x				ÿ	=		- Y					
Lý		L	. 0	_	1 \	l y												
	7	=	0,	4	=	- (-	⇒ >	Sa	ddl	C							
																		_
	· ·	_	ţ	(x	u)		04	\d	f l	(x*, y	, k) :	= t	. [2	۲ ° ۱	/*	= 0	<u> </u>
	้. น	=	f,	(x	' \ 'u)			100	+ '''	11 =)	· ·	2 (·	` / /			
											\u = \v =	Ž	1-	y *				
	i	=	, x f,(:									C		U				
		=	f,(X _* +	·u,	Y * +	- v)											


_		_			_													
He	1Pe	rpc	lic	1	Fixe	ed		Pts	•									
	Fi	xed	ρł	·s	tha	d	Per	ı od i	า เ	unc	hang	col	,	qual	ital	ivel	y,	
	Ьу		SMO	M	181	line	ar	ter	ms,	re	latio	re	fo	ł	heir	نل	near	izeo
	P	n ase		Par	tra	its.												
	1 L	Oca	l	pha	se	Pe	rtra	it	૧૯	አ ሊ	a	hy	per b	polic	f	xeo	lp	+.
	19		top	7010	gico	elly	e	gui	vale	ent	h	0	the		Phas	e	ber	trait
	0	-	ifs	(line	ewi	zeo		M	si O	ν" -							two
				V C	ì.	hon	reo	мы	phis	m	સ	nists	3	beh	vee	1 +1	12	two
	Y	અ	hyl	ലെ	olic		i Xe	J	pts	,	all	લે	gen.	valı	nes	h	we	
							P											
							M				salı	re	ha	ე [']	zen	' re	eal	
							fixe											


	į ~	Ξ	f (2	c)	•	X ~	(0)	Ξ	$\widetilde{\chi}$	0			X	€ IR	n	
if		n -	is	CO	ntinu	wys	5	and		all	par	tial	1 0	lerin	rati	ves
of		F	are	. C	anti	n (40	ns	0	N	a	sul	95 e	-	D	C IF	ζ`,
th	دم	fz	ય	X	•	'n	D,		J	-he	I.	٧·P	a	bov	e	
ho	ર ડ	a		นาเ	que	S	olu	Hen		X	(t)	a	t	Lea	st	for
	me															
			_													
=	>		Tr	aje	ctor	es	(ann	of	i	nte	sec	+	•		
				V							Ч					\nearrow
											J					X
									(.	F			A		7	
	/ -	Traje	ectou	ies				solu		igve			/ '		1	
	insi	ide	Sł	on					T		•	(/			
	į٧	sid	e						1	ED	_					
					/											
					-(
	P	Close	ed	M) C ·											

	Lo	tka	- Y	olle	ssa.		Pop	ula	tia	Λ	D	yno	mi	رح				
	T.							- [-		P						[].	- (<u>, </u>
	10		Spe	Cies			Com	per	ng	10	1	a	res	our	ce	(Li	wite	4)
•	t	ach	5	pec	es		has	C	\	900	wfh	6	rte,	C	arry	ine	cap	d) acity
			4	N	=	ΓN	(1	_ ^	1/K)	log	isti	C (egn.	•	0		
•	Ti	NO	L	ogis	lic	eg	ns	+	Ce	gme	eĥ	h'9~	١.					
						9	ا مرا	٢.	0					χ:	sak	bits	3	
					rak	sits	rang rash yuan	shec	4					y :	Sh	eep)	
																•		
		χ	=	X	(3	_	×	/2	_	<u>ک</u> ر	1)			Rak	bits	ha	ne	
														hi	bits thes acid	ده	mi	y
		Ý	Ξ	ч	()		X	,	_	- Y				7	JUG 1	9		
		_											She	e e p	1 kg	BAPP.	C	
ч				DI	~a <	J	Pl	<i>a</i> n	P				tha		sk rabb	ifs		
8				, ,	617		, ,	,00							1 4000	112.		
	3				ı)	~	find	f	i Xec	J	nts	(_{0,2})	(0,0)		
													6,0)		$(\frac{2}{3})$			
					5)	C	lassi	fy u	sing	Jaco	Sian							
					3)		ind	ર્ણા	gen v	ecto	n S	to	Du	t	line	S		
						C	find nd	crr	ows	j-l	noug	h	' <i>‡</i>	he	fixed	Pt:	S .	
								(→ ⁰					•		
								3			·X							

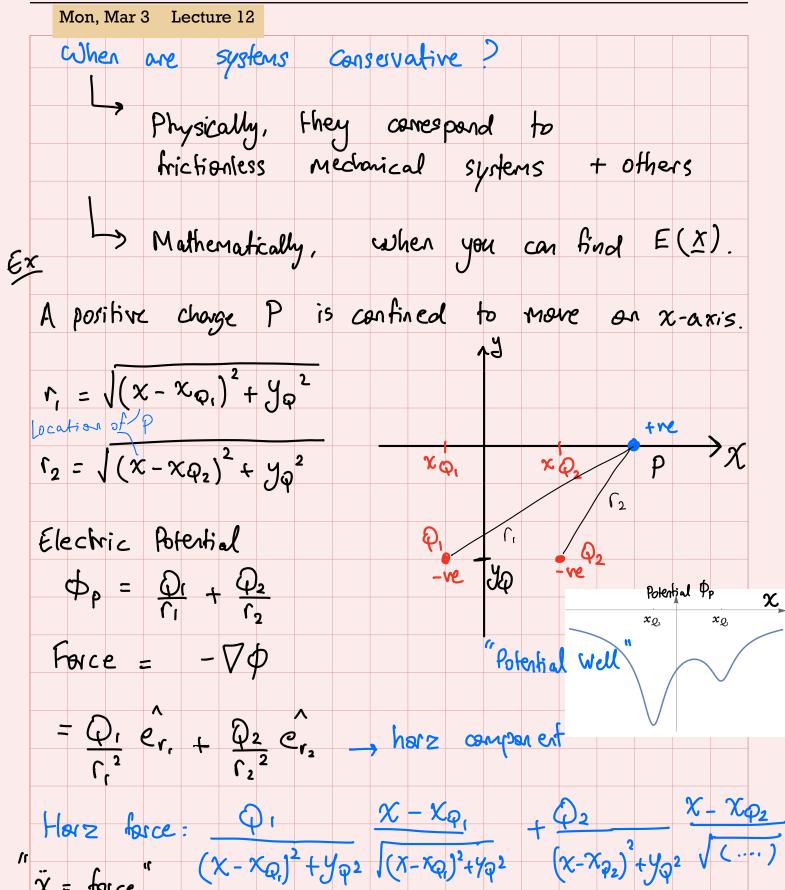
Wed, Feb 26 Lecture 11

	g up							plane		0.1	
Using	Linear	12a	X1 &0.	5	at		eac	24	fixed	P	
(0,2)	>		A = {				λ , 2	=	V _{1,2}	. 2	
	-										
(2/3,	1/3)	,)	\ = {	-2	-26	, +	Ð∙ 5	913			
Fixed Point	Jacobian	τ	Δ 2	l _I	$\overset{ ightarrow}{v_{\mathtt{I}}}$		λ_2	$\overset{ ightarrow}{v_{\mathtt{2}}}$			
(°)	$ \begin{pmatrix} -\mathbf{I} & 0 \\ -2 & -2 \end{pmatrix} $	-3	2 -2	.00	(1.00) -	·1.00	(-I.00 2.00)	stal	ole o	node
$\begin{pmatrix} \frac{2}{3} \\ \frac{4}{3} \end{pmatrix}$	$\begin{pmatrix} -\frac{1}{3} & -\frac{4}{3} \\ -\frac{4}{3} & -\frac{4}{3} \end{pmatrix}$	$-\frac{5}{3}$	$-\frac{4}{3}$ -2	2.26	(0.69 (1.00	$\left \begin{array}{c} 3 \\ \end{array} \right $	0.591	(-I.44 I.00	Sodo	lle	
(6 _o)	$\begin{pmatrix} -3 & -12 \\ 0 & -4 \end{pmatrix}$	-7	12 -4	.00	(I2.0 I.00) -	3.00	(I.OO)	Stal	de	node
(°)	$\begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$	5	6 3.0	00	(o) 2	2.00	$\binom{\text{IOO}}{O}$	unst	able	node
		(2	$(x^*, y^*) = \{6.6\}$	o, o}			V2.		$(x^*, y^*) = \{0, \dots$	2.0}	→ / (
	I.O						1.0				
V ₂	0.5					V ₁	0.5				
	0.0						0.0				
	-0.5						-0.5				
	-I.O	-0.5	0.0	0.5	I.	0	-I.O	-I.O -O.	5 0.0	0.5	1.0

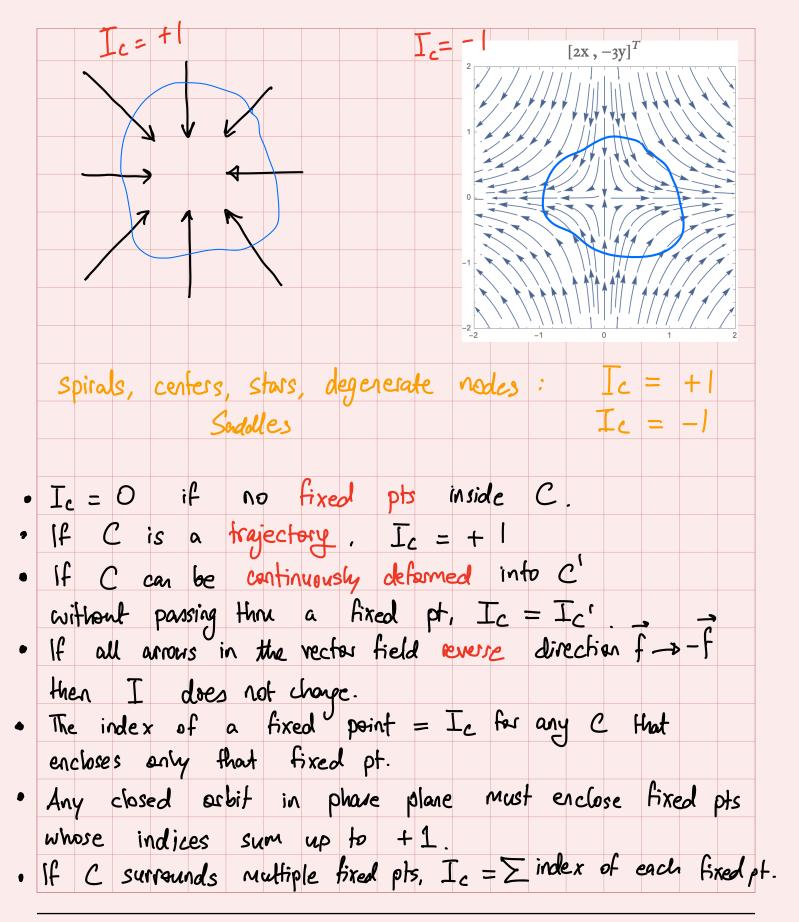
$$x^{2}-x = -\frac{dV}{dx}$$

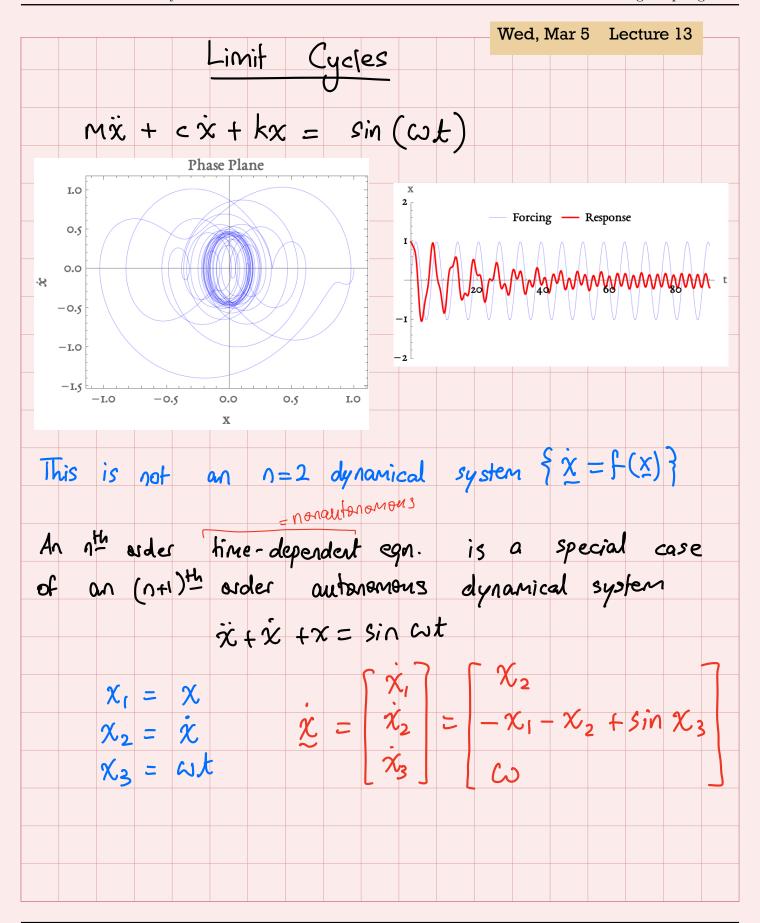
$$\int (x^{3}-x)dx = \int -\frac{dV}{dx}$$

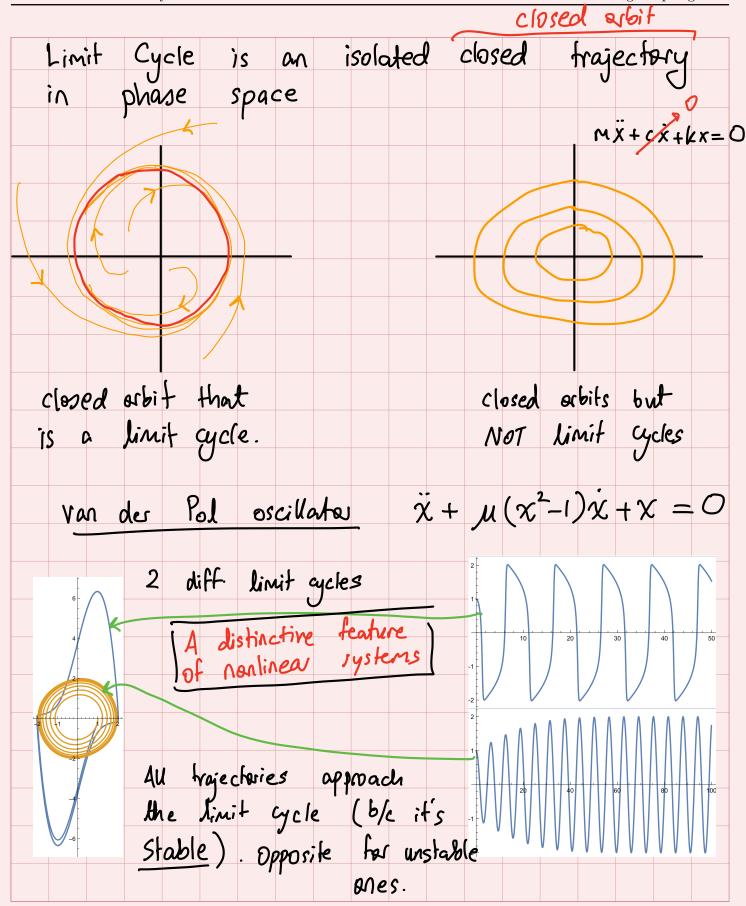
$$\frac{x}{4} - \frac{x^{1}}{2} = -Y + C$$


$$\frac{x}{4} + \frac{x}{4} + \frac{x}{4} + \frac{x}{4} = 0$$

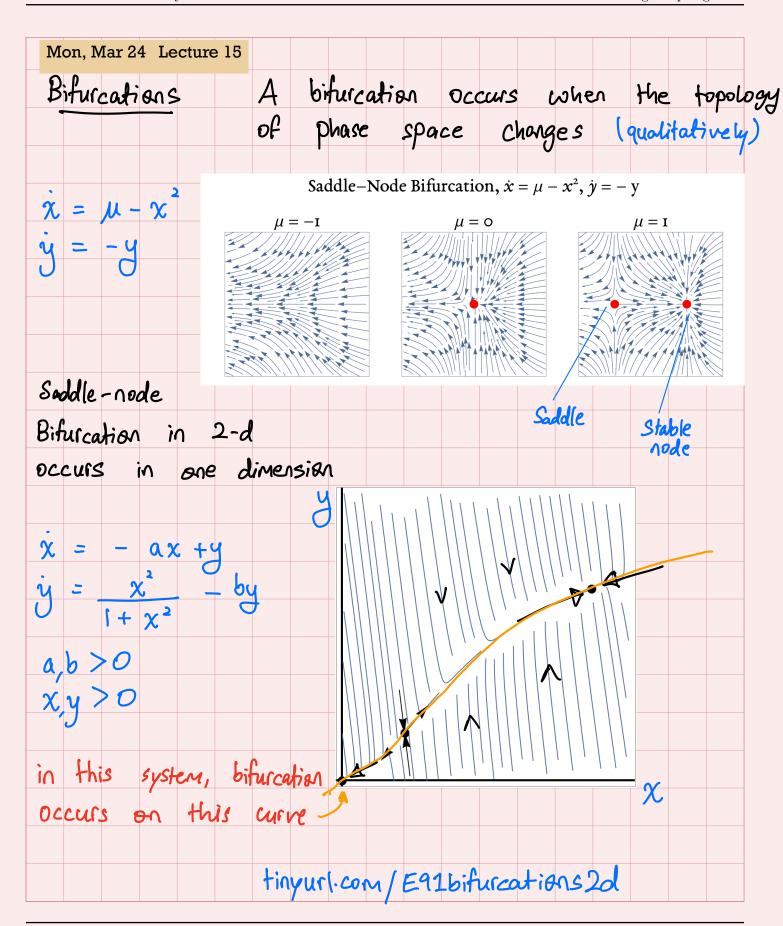
$$\frac{x}{4} - \frac{x^{1}}{2} = -Y + C$$

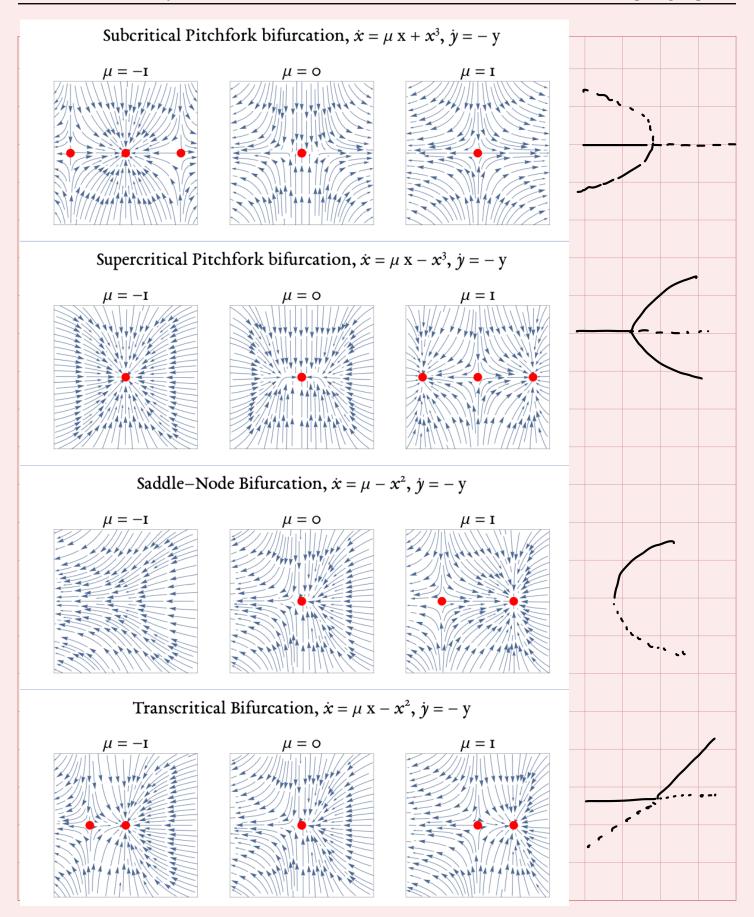

$$\frac{x}{4} + \frac{x}{4} + \frac{x}{4} + \frac{x}{4} + \frac{x}{4} = 0$$

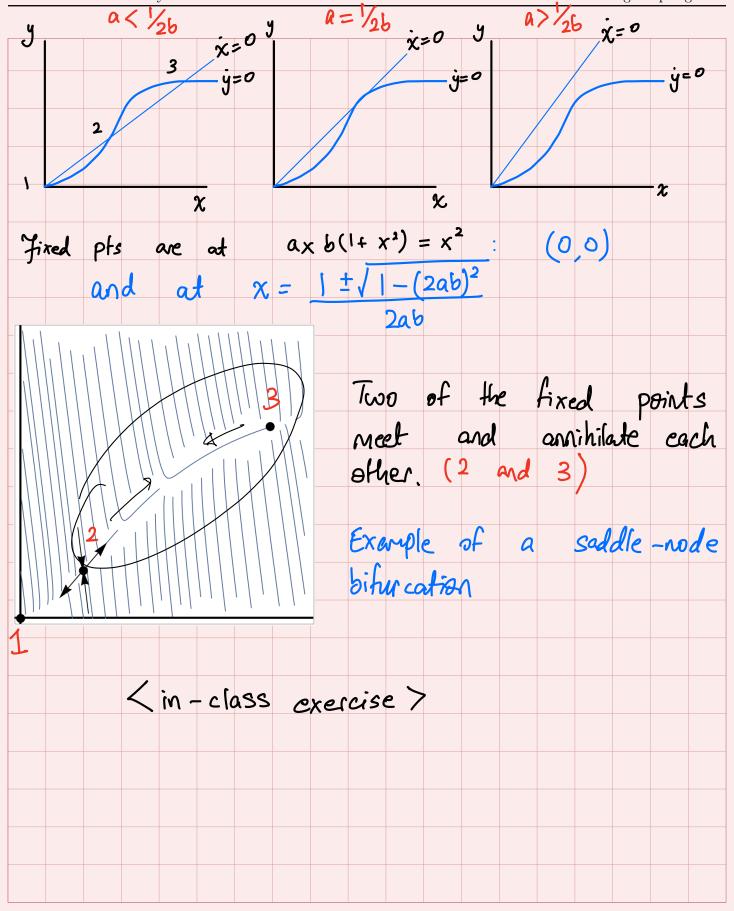

$$\frac{x}{4} - \frac{x}{4} = -Y + C$$

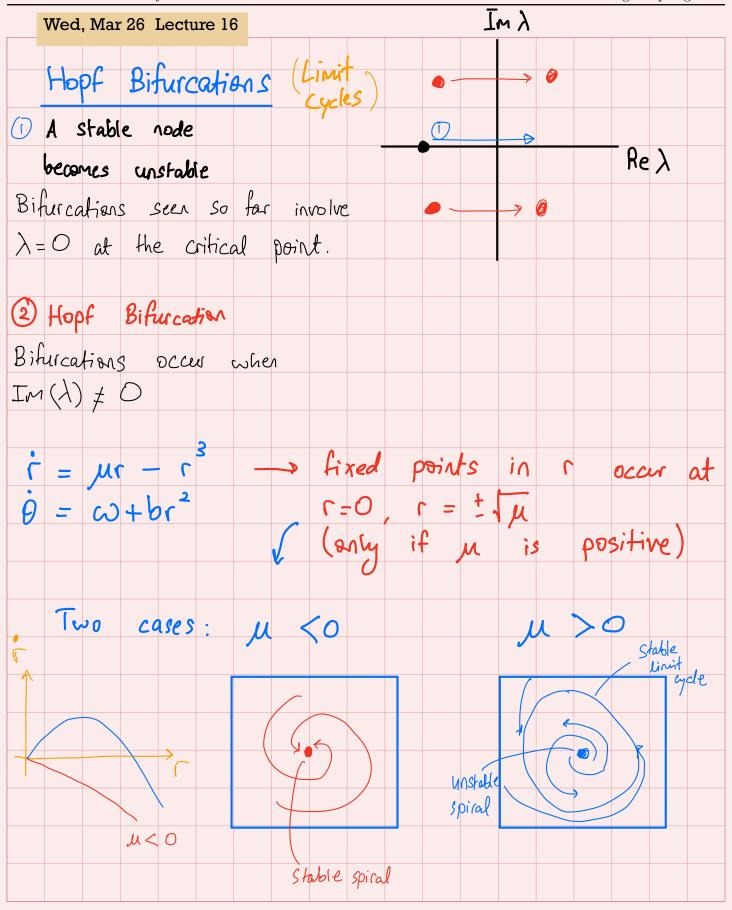

$$\frac{x}{4} + \frac{x}{4} + \frac{x}{4}$$

(nd	ex	0	Ç	۵	C	(osed	d	Cul	`V <u>C</u>	ίΛ			vec	he	d	field	d.
A		Med	rsu	و	of	f	he	4 (wind	ling"	0	f	the	. γ	recto	v A	field	•
Leg	<u> </u>	×	= 1	f(×) ,	X.	€R	2		an	d	C	a	C	(osec	d	cur	æ
		_	~							(dæs	nof	S	elf	- inte	rse	ct)	
					fiel						_						Ked	pts
		A	(100)	\$ = 90°	,					{)	the	ve	cter	ji,	હી)	
*	d				C 46	, , , ,	= 45° <	3		Lot	. ф	be	, fh	• 0	mle	be	etwee	Λ
\		- JA	^	9	n a			7									nd	
•	\(\big _{\pi}\)	١ ١	1 1	b /	99										_		peia	
k			A A] 	9 9			0				5 =						
\	\	· /		11			Ju										Þ	
												over	94	16	د-د	·W.	leq	ρ
Ino	le x	(ଚ	of (is	;						arec	ind	C				
			-		1	ſ	47											
		^	1	= ع	<u>ι</u> 2π	L	₽ <u>]</u> ,											
		_	_[_		1			<u>C</u>	Ce				1.	•				
		1/0		11	la.	ا ا	<i>U</i>		کی کے کہا	2.5	L.		CKG	915°C	3	rev	10100	
		\ <u>\</u>	I ALA		by 1	Out.	nte r		vect	ice	118	a N	211	2)		13	~	
		7 0	3008	72		Au				136			JUU			•		

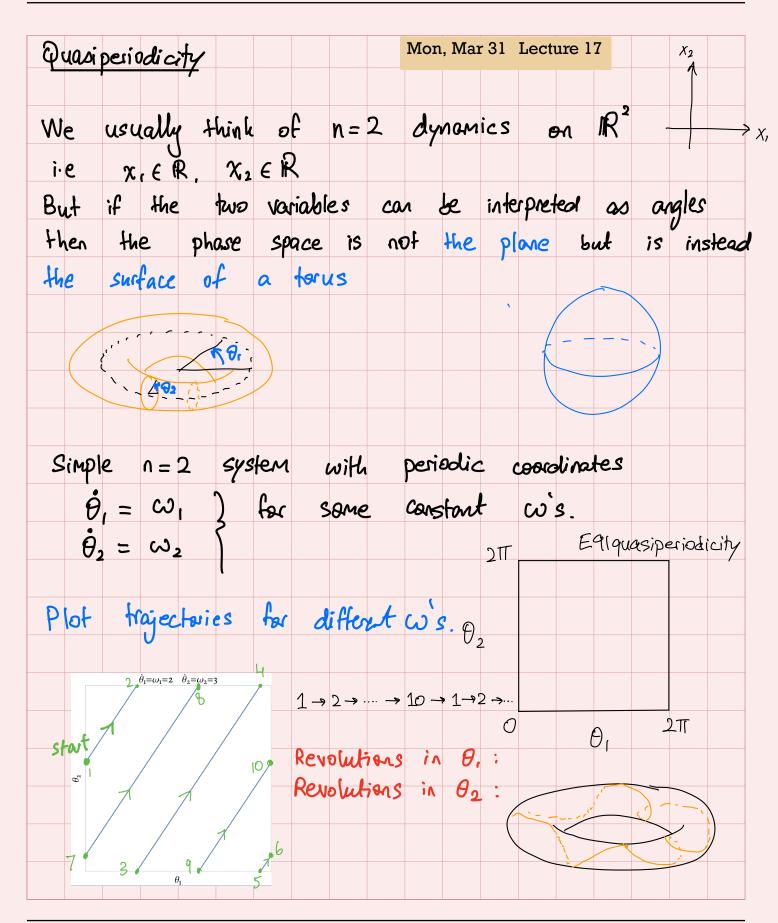


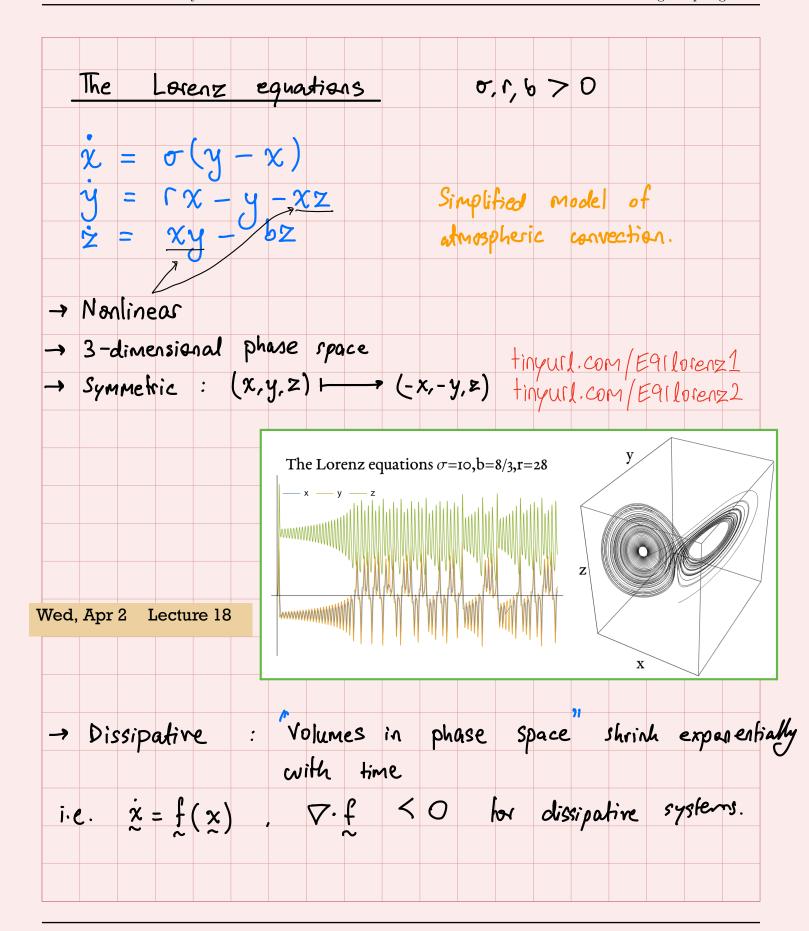


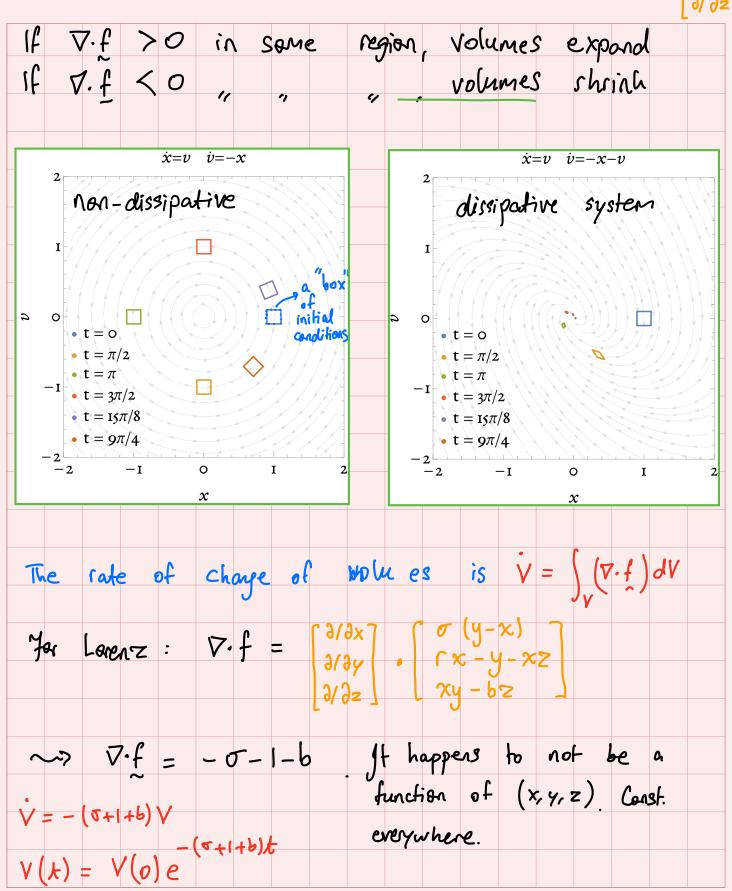

	_													Mon	, Mar	: 17	Lecti	ire 14
	Pro	viv	?	the	6	zbse	rce	0	£	ح ای	sed	9	sbit	5				
		\sim	}									~		\$				
										a	5	upe	set	o f	i l	mit	Cyc	Es.
ιÌ		Gra	die	nf	Su	ster	15	a	ppr	ach	•							
• ')				•	7				1)									
	46	- 0	9	yste	M	<u> </u>	= f(x)	ے	M	be	wril	ten	as	·X =	_ '	V	(<u>x</u>)
	J.	٩٢	Can	P	Scal	21	func	ha.	ν	(x)	1	100 a		10		seal.	acl	: 6
	ا م	v:aL	1	00	اللا		ta	مه ما		D (رخامه		ار مار	%: L/	ا وم	٠	5 6	2112
	<u></u>	X 13 T	1	yste e or	1100	/3	343	101-1			einal	iuvu		red.	JUNT	able	- /	
	n	••	_	•	<i>A</i> 1	<u> </u>	ò,	<i>ዮ (</i>	~\		J"",					_	<i>l</i>	0
	K <u>ec</u>	<u>all :</u>		in V(x)	1-0		<u>-</u> کر	- + C	^)	0.4	, h	re c	e w		uwa	ys	<i>ም</i> ለ	2 (
NO	osci	il-	٦	in	2-0	!,	U	of	So	Su	e ;	has	d t	o Ki	nd	V		• 1-
an 4	4() II	, T					P	roof		<u> </u>	- 5	7 V (ž)			1/2	pe	riod T.
			0	t Si	nØ:	= 0				1	, ()	ζ,
	χ,	= 2	(2					char	ge i	in \	/	MA)	t=8	<i>t t</i>	∤= T	• •	musf	be 0.
	χ̈́ ₂ =		sin						- ∨∆	= '(dv :	= '	(d)	/ ·dx		\		
		٢	Υ.	7						Jo	1	•			ä	Z. Z.	Ť	
f(<u>x</u>) =	:	-5in :	x.	10 V	fa	und.) ((5	7	x)	dt	L	15	$\widetilde{(v)}$	×	
		L		7	ian	se ·			J	0		~ /			T.		~	
lor	oh A	Br	٧, .	s·t·					= 7 =	S (-	<u>.</u> کې	\dot{x}	dt	= '	- (۱۱×	(1 ² d	t
C		٧V	,	- 2	<u>V</u> =	ν .				0				· · ·	J)		ر
~					<u> </u>	~ 1		6	ni Ven	a	syst	en	x=-	DV(x) \	< 0	C	NTRA
	of es			— 9	<u>V</u> =	-Sil	۰ Χ,	a	_ دا	oseol	8-0	bit	is	impo	13526	e\		
	d a	_		6	X ₂													


2) Liapunov Fun	ction appr	pach	$\dot{x} = f(x)$	with $f(x^*) = 0$
If we can find	d a cont	tinuously	differentia	ble neal-valued
function $V(x)$ V(x) >	0 \forall \chi \chi \chi \chi \chi \chi \chi \chi	≠ × × }	then syste	bits.
				K
where $V(X)$:	an energy. decreases	-like fu along for	action that ajectories	. I'
3) Dulac's Crite	n'en	$\dot{x} = f(x)$	and f	is defined simply connected
		swoset.	CIK .	SI P. G. CHINECTE
If there exists	g(x) suc	h that	V. (9 ×.) has one
sign throughout	o, H within	hen Hhere D.	are	no closed
orbits entirely $ \iint \nabla \cdot (g \times) dA = \frac{1}{2} $ That one sign"		10	$\frac{1}{2} = 0$	ix C Closed arbit
\Rightarrow term $\neq 0$	⇒ No (C exists		

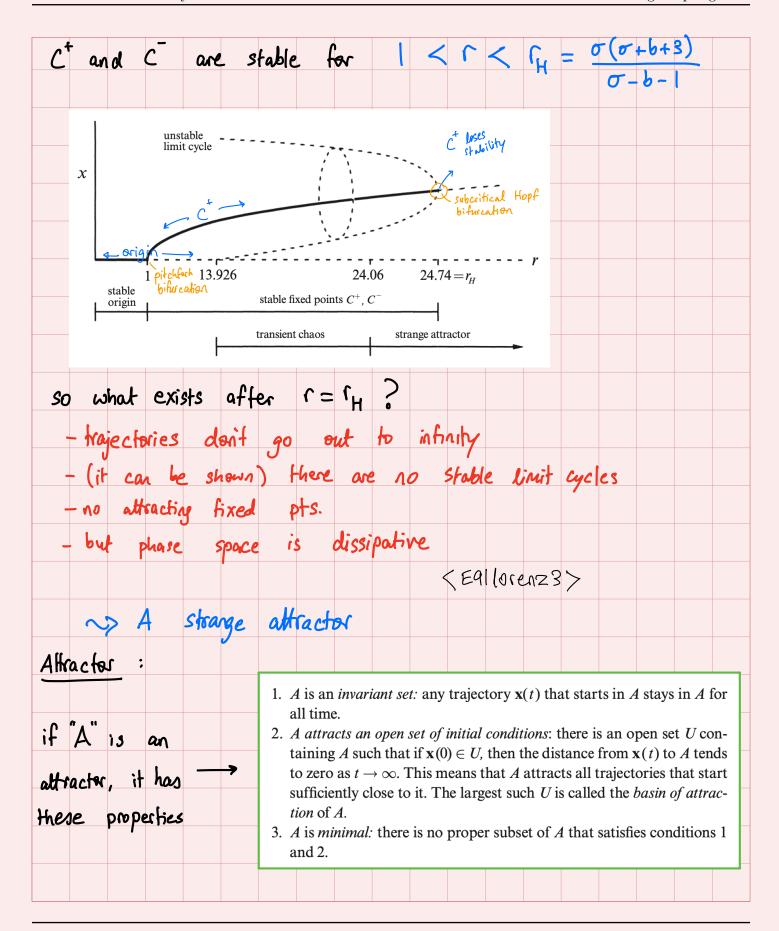
		Pa	egen	æ	ଚ-	f ·	Clos	æd	ε	ક્રિક	ts		Po	inco	ré-	-Be	ndir	53 Q/	T	m
\f							^	l .		•				r 16)2					
	'	·	is	د ر	2	nsec	X ,	v Dan	nole 1	d	Su	ibset	. 6	*			. :	<u> </u>		N
	2		_									ME			e t	Hat	- Iv	CU	cles	D
	3	D	તક	es	10) 	hav	<u>e</u> (my	•	'i Ke	d	pts	•		•				
	4	The	ere	e	Xis	ts	a	fo.	ajec	per	4	tho nsid	t	is	cant	ne	d	in	D:	_
		sł	- ovts	•	in	D	010	l '	Sta	78	jı	nsid	٤	D	for	al	L	ันชน	æ ክ [.]	ne
	Tre		rap	ping) N	egie	30°		_									Ā		
	/	C	is	s c		Llose	20)	مدلا	410	0	s o	sbbi	09C	hes		a C	los	ed	arbi	F.
							haos													
																				_
	Th	e	tope	logi	0	f 1	? 1	nen	ents	a	wth	ing	toc	V	vibl	fre	M	hap	Denin	f
	in		he	P	hasi	و	plan	e		2 → X ₁										
												: f(<u>r</u>)	Ca	nnol	se	lf-iv	Hers	ect.	_
	۱F		a	traj	ecto	rch ,	is	k	1 9 4	^	to	be	. to	appe	ed	in	a	œr	tain	
	h	nite		Subs	et	0	FI	R^2	i	+ 6	nus	be H e	wen	mal	hy	sett	le o	low	1	
	ní	afr	Or	Lir	uf	cy	cle.	•												
									4	fore	ves	;	it	will	e	rest	vall	y n	un	
			οf															,		
	[v	ı n	> 3	, a	uton	9 119	us	348	ems	,	cha	os i	3	Possi	ble	be	au	oe 19	1 ² h	درم
												n ?								
	Cé	zafir	red	to	۵		subs	et	of	IR"	1	and	C	ional	les (ore	und	for	ക്ര	
	W	ithe	red ut 4	in te	rse	chin	0.	~	5	TRA	NG	E	477	-QA	(T)	RS.				

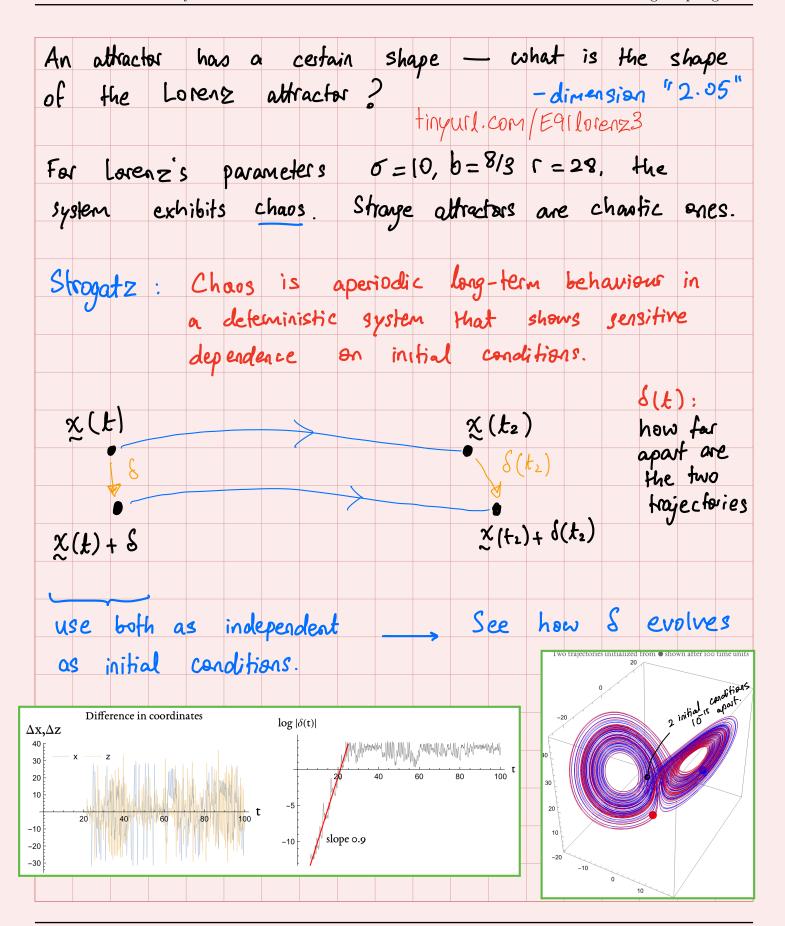


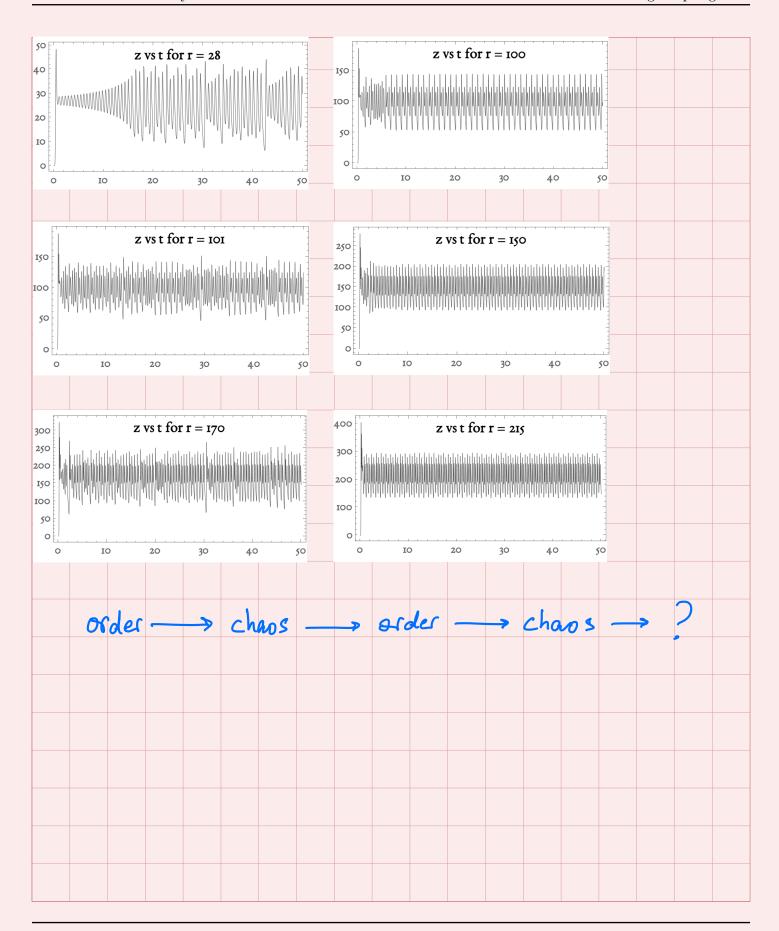


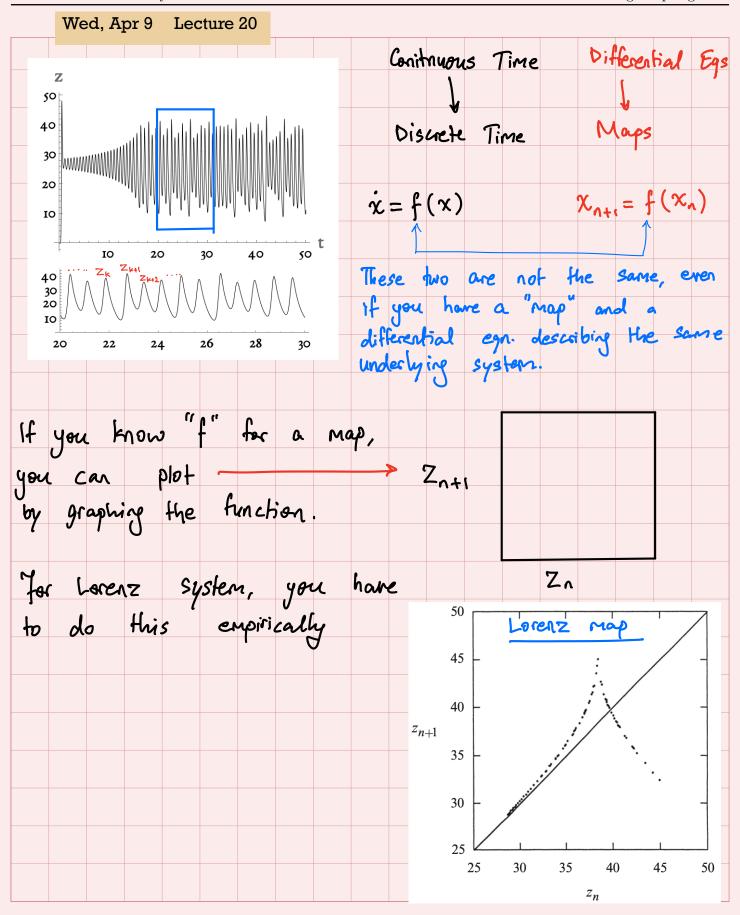


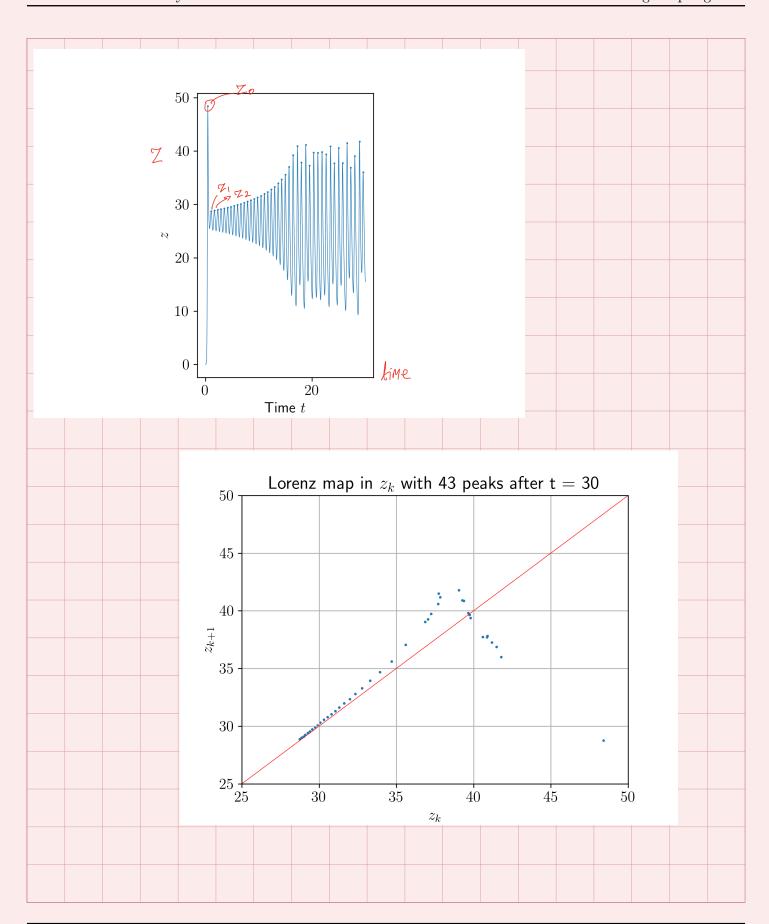
convof to	x, y					i i	= mr - w+	- r ³
$\chi = \Gamma \cos \theta$, y			V					
$\dot{\chi} = i\cos\theta - r$	Osin O	plug	iv					
$\dot{\chi} = (\mu r - r^3)$	205θ -	r (w) + br ²)	Sint				
$= \mu x - (x - x)$	x +y')X wy	- y +	(W+b) higher-e	x + y°	terms			
$\dot{y} = \omega x + .$						-w		
Eigenvalues						м		
As ut,						ivery		
Types of						J		
Supercritic	al							
Subcritica Saddle - no		<	in-class	s exe	य ८३८	7		
on-period								

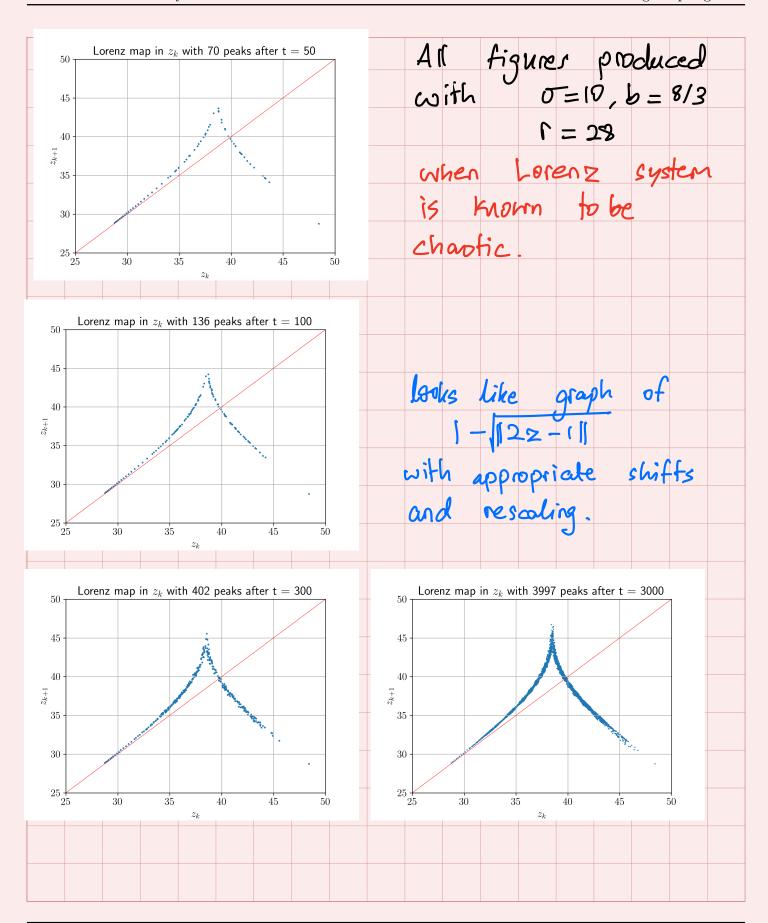



ω, = 2	Revolutions	in E), ;	1		
$\omega_2 = 6$	Revolutions	in 8	2.	3		
$\frac{2}{100000000000000000000000000000000000$						
	Revis in 8					e around
	Revis in θ_2					5x around
			1	mall circ tarting poi		es back ho
3 1 0, 5 13 1				U U	,	
T		0			, ,	
These were	examples	ot	peri	odic	Flow	an torus
Trainaberias 00	etcoiolet 1:		:46	<u> </u>	ω ₂ /ω,	
Trajectories on if ω_1/ω_2	= P/a fac	Some	infe	ger (•
then Θ , O	completes P	revo	lution	us in	P, 9, the	time
	completes q					
	•					
if ω_1/ω_2 irra	rand, flow	in Ph	ase	space	is quas	iperiodic;
any trajectory fi	us rue phase	e spac	e Wi			peating.
				$\dot{\theta}_1$ = ω_1 =2 $\dot{\theta}_2$ = ω_2 =2		
tinyurl.com/E9	1 quasiperiodic	ity				
			θ ² -			

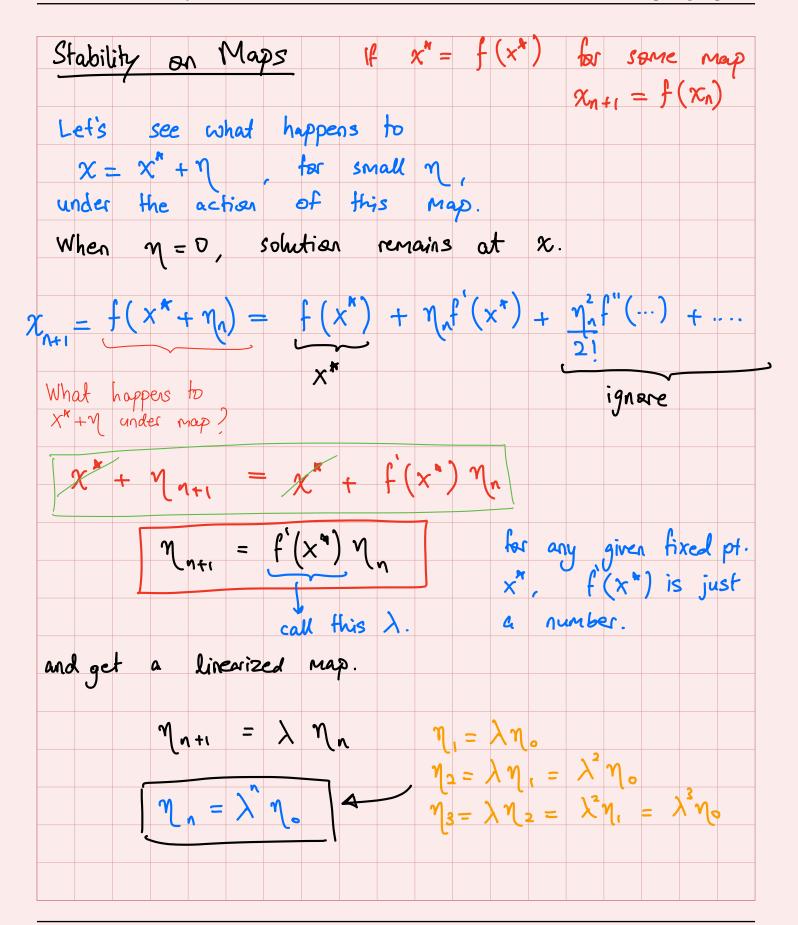

Be	?cau	se	of	(dissi	pal	ion											
→	Q	lasi	perie	odic	ity	રાં	ne	of	alto	wed	(bec	au s e	= 9	.p.	fle) W	
	00	cur	s e	} ^	the	\$1	nfai	ce	of	a	fixe	ed	tori	15	in	phas	e 5	pace
																		you
			hav							_								
\rightarrow			repe										lling	2	loseo	ع ا	rbit	S
			alle								~	4	17	,				
											1		X					
F	ixe	d	Poin	uts	of		Lon	enz	9	syste	M							
-																		
	(x,	,4,3	z) =	- (2	i.	s o	dwa	15 .	2	fixe	d	pt.					
														((C ⁺ ,)	
	(x,	y,z) =		±√	b (۱ – ۱)	- JE	رر-	1)	r-	- I)		are	fiz	red	pts
															if	()	>	
	Lin	ew	SI	-abi	lity	of	Ø	cigir	\ :									
			ed		-Bren					χ	= 0	r(y	- x)					
										ÿ	= (κ-	y					
	'n]=	- O	C	7	χ				Ž	۲ -	62	>	confr	octing	din	?chiev	1
	ġ		\(\)	_	(y								<u> </u>	I			>
7	´ =	- (0+1]	ſ	>			le			l			→ _Z
4	7 =	5	- 0	し ニ	0	((–	()	٦	<	:	Stat	ole .	node					

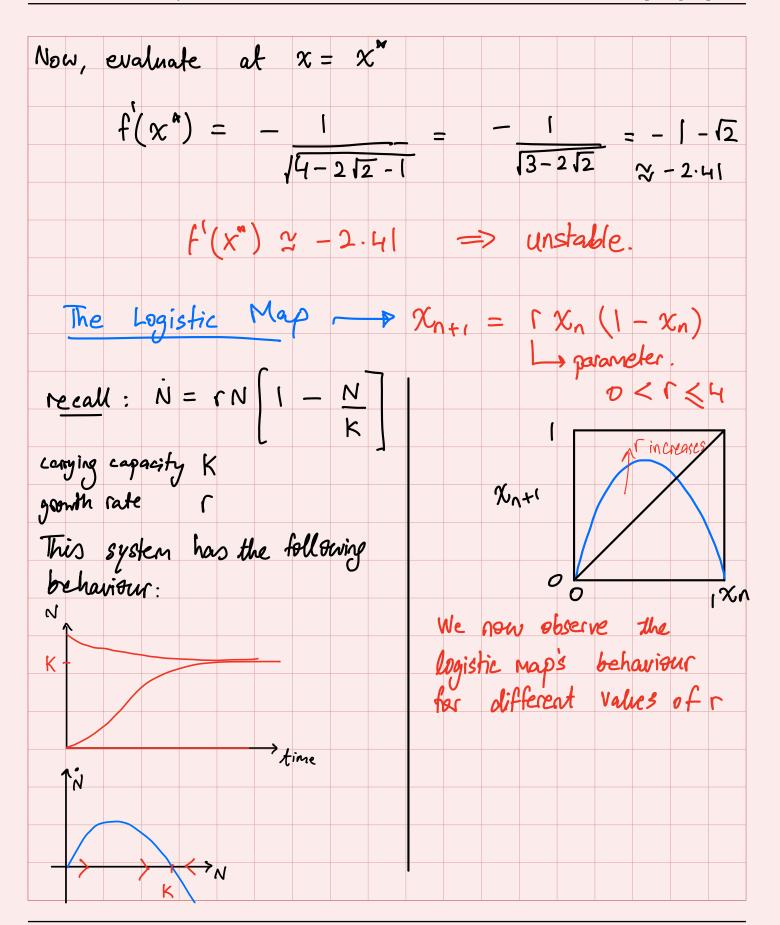


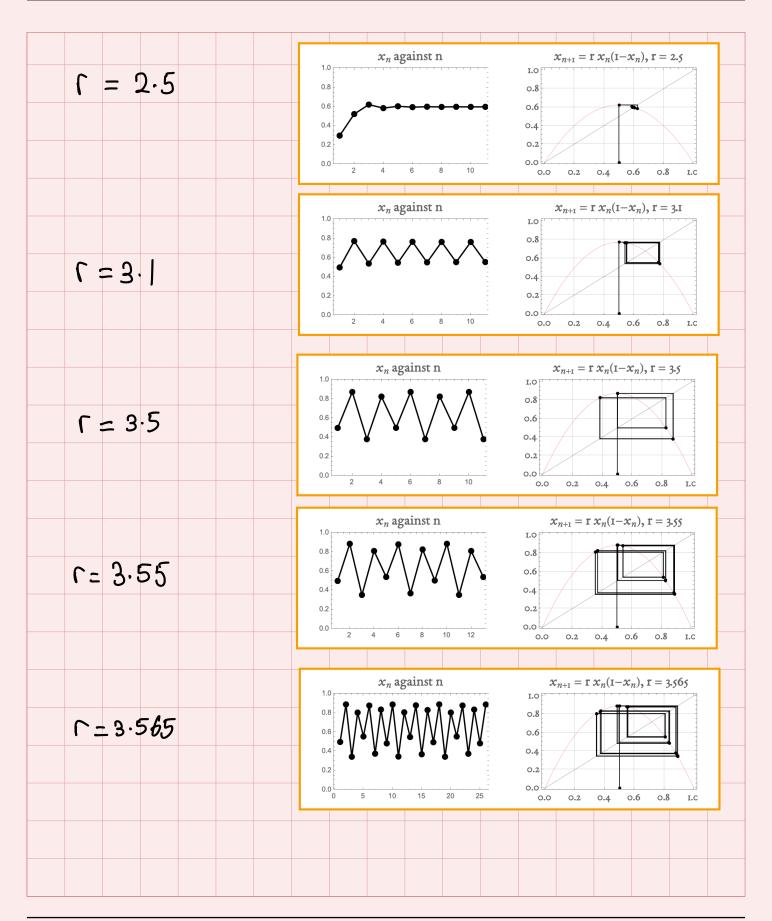



Mon, Apr 7 L	ecture 19				
Time Har	izon of	Prediction	in sy	stems	with
	dependenc		•	conditi	
$\ \delta(t)\ $	~ 6.		for Lare	une sy	مر ملی
				0.9	
			\(\times_{\tim		
	. 00				= 8 , 1= 28
find time	e t'at	which h	vo insha	lly ne	earby (80)
find time trajectaries	have dive	sged by	More	than e	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
F ~	1 80 le				
\sim					
	$e^{\lambda t^{n}} = 7$	la Pr			7
	e^~ =>		100	E	
118011			λ_1	[11 60	
Example			th	e lamest	Liapunov
Two measure		Made		PONON	of the o-9 for larenz
		—	59	stem	
to a precisi		= 10.	D 1. 10		
We consider		more		5 10.2	$\sqrt{3}$
than E =	10 to 6	- 1100000F	ماما		
Increase	initial orec	isian.		$\Rightarrow t^{\alpha}$	√ 3 <i>0</i> -7
Increase Now, 80 =	10 15 (100.8	00 800 X MA	ne project		
1190, 80	(10)		ic picare)		

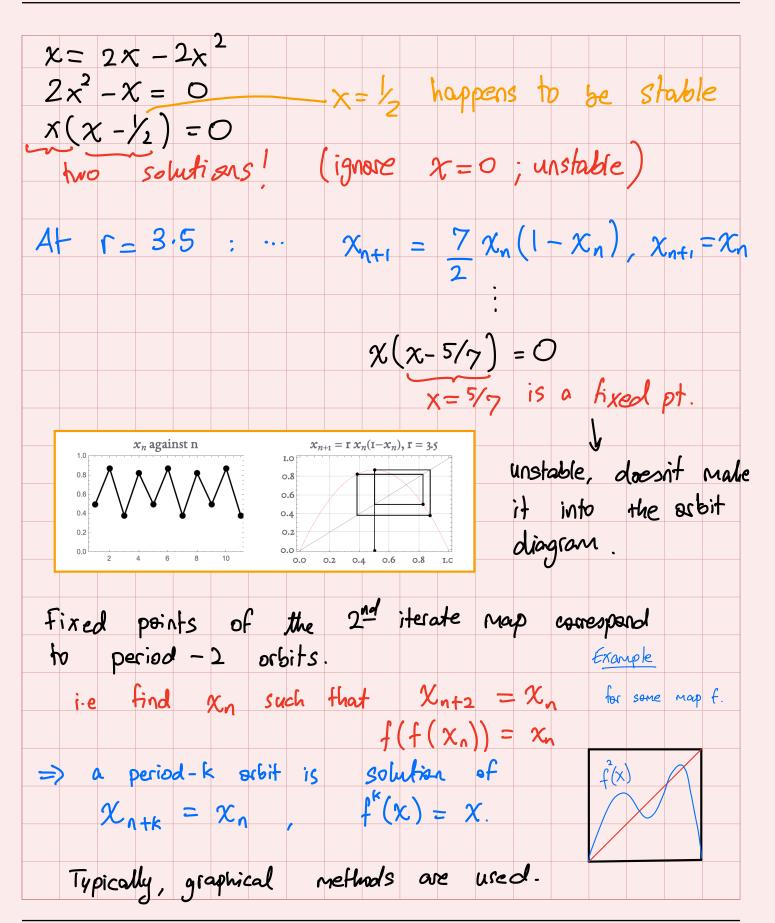
What exactly is \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
hime	
S and a second with	
La Caracter	
	i principal
$\delta_{i}(o)$ \rightarrow $\delta_{i}(o)e^{\lambda_{i}t}$	
$\delta_{1}(0)$ $\delta_{2}(0)e^{\lambda_{2}t}$	t
$\delta_3(0)$ $\delta_3(0)e^{\lambda_3}$	
At large times, the largest λ_k controls the	Size of
the ellipsoid Liapunov Exponent.	
Negative Xx => that direction Shrinks	
Positive $\lambda k \Rightarrow$ that direction expands.	
If Liapunov Exponent > 0, => sensitive depo	enden ce
on instal	carolitians.
tinyurl.com/E91lorenz4 > remin	

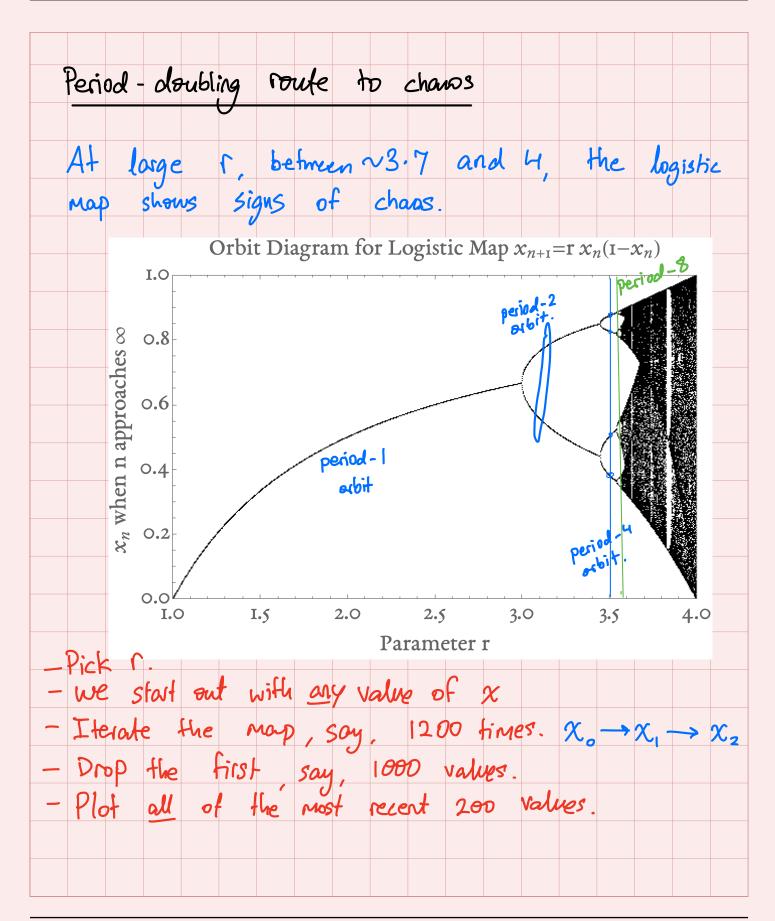


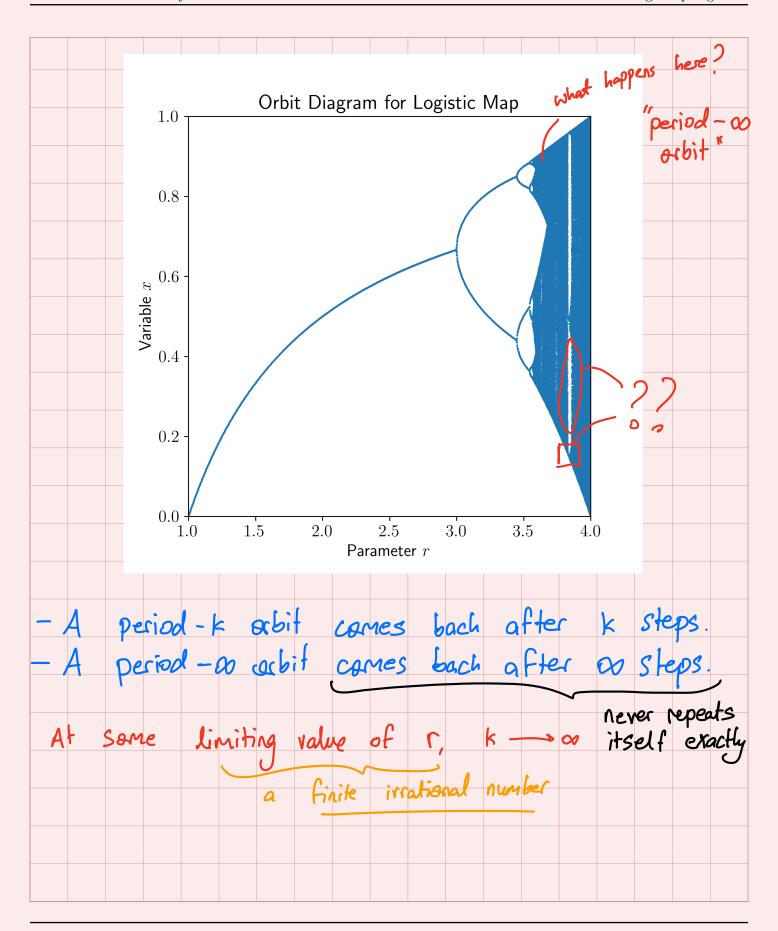


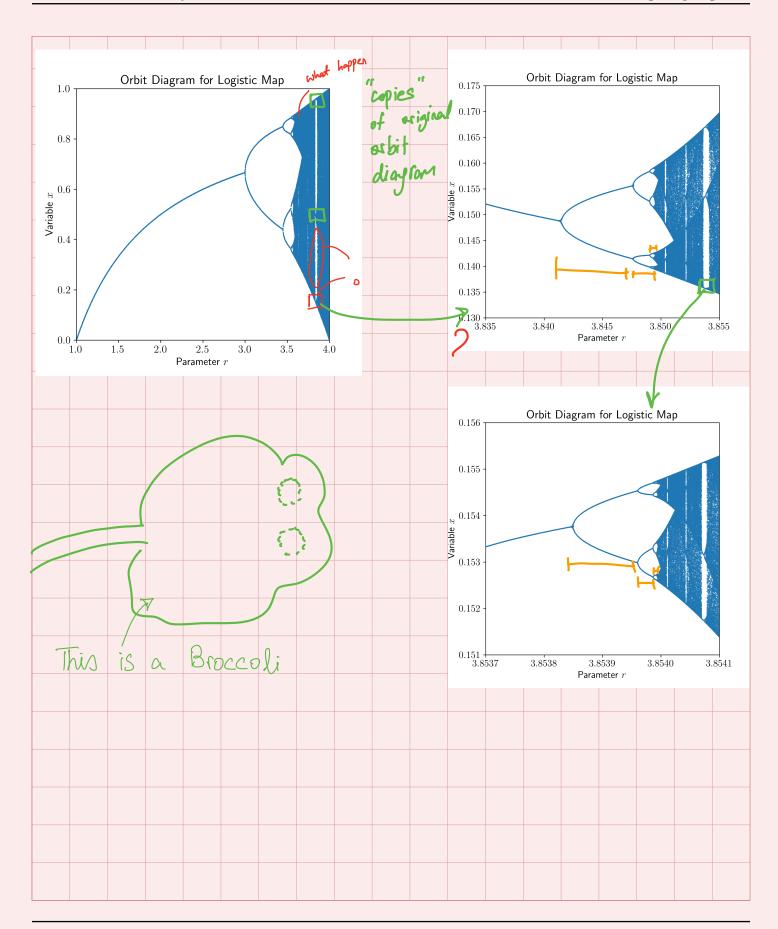

Wh	Y	ove	CA	æ	lool	uing	at	M	aps	?								
												not	WE	eU -	· Und	lerst	ood.	
															caf			
	Son	re	a	pecl	3	of	Hh	e	L	ભહ્ય	2	sy:	stem	4	migh	t ·	give	
					insiç							1						
\rightarrow	Ca	w	1.	d	Μ	ops	•	hau	re	cho	MOS	ر (
	_				_								es	\$	ense	to	,	
	fh	inh	0	F	f	ine		9	•	disc	rete							
		00				r (.	<u> </u>				ſ	li I) _		ତ			
		ኢ	1+1	7	- ,	} (?	Kn)				r	: 11	\ _	•	I			
		f i	c	a	map	4	for	M	R	t	, ,	ζ						
		ا مالا	- .	ch	dy		1 6	<u> </u>	n. L	مد	, c	aabi	านคน	10				
		and	/ 1	Dia	ece	a) iC	ر م	SM	an F	h	- 0	SA() N		(
		(^	0	jury	s	در در	us ps) kin	ks	مرد	alle	ove	(k					
							·											
2	O OM	e N	1802	رع	com	ples	of	~	aps									
0.8	x	$x_{n+1} = x_n^2$	HO.4		0.8	x_{n+1}	$=x_n^2+0.3$		0.8		$x_{n+1} = 1$	$-x_n^2$		1.0	x_n	$_{+1} = \cos x$	n E	
0.6	•				0.6				0.6					0.0				
0.0	0.2	0.4	o.6 o.8	LO	0.0	0.2 0.4	0.6	0.8	0.2	0.2	0.4	0.6	.8 1.0	-0.5 -1.0	-1		I	2

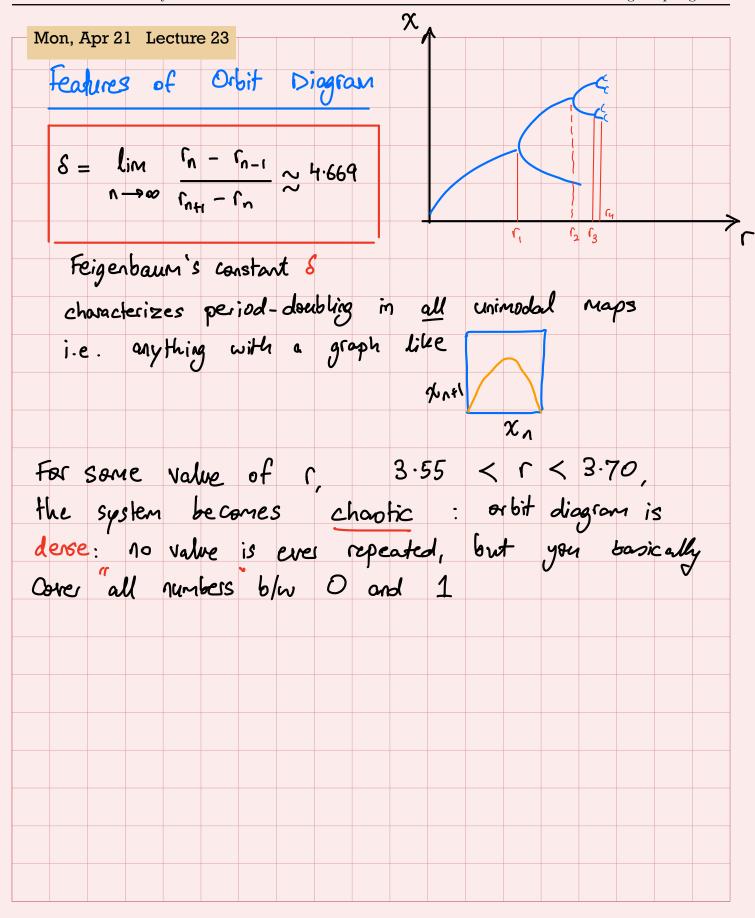
Mon	ı, Ap	or 14	Lec	cture	21													
Ma	aps		can	h	ave		f;	xeol		poi	nts	a	nd		ber	iadio	<u> </u>	чb
e.q	•		sidel						X ₁₊				χ_{n}					
J									•									
	if		% :	- 1	,	χ,	=	0.	χ	2	= [,	χ3	=	D	,	•	
								 ç!	ep l									
											7					>		
							0		Stef) 2	•	1						
	1		r						,		[ماد	C C	11		1460	/*	
We	. h	land	<u> </u>	DUNO	(a	pe	LISS	–	2	€ ८	717	0+	+1	ne 1	мар	(4))
A1_(. ما			C.	. 0	nain	ļ	Can	صا	C	lled	2 ,	2	neci	od -	1 6	chit	
Nol	HE :				eol = -			LWI	<i>(</i>)					Peri		1 6	9011	•
		1	~n	41	= 1 -			<u></u>	Y		Y .					step	1	
							<i></i>		~ ∧+			•		(
	~	•			X			 	ixeo ar	d f	of.	- 1	abi					
	^	741											tien		e	n:		
									X	<u>ر</u> =	f($x_n)$, a	r 2	ζ=	(- ;	χ²	
		0			Xn			1										
fer	a		given	4,		how	do	w	e f	find		peji	od-r) 6	npit	- 2)	
																S 1		2

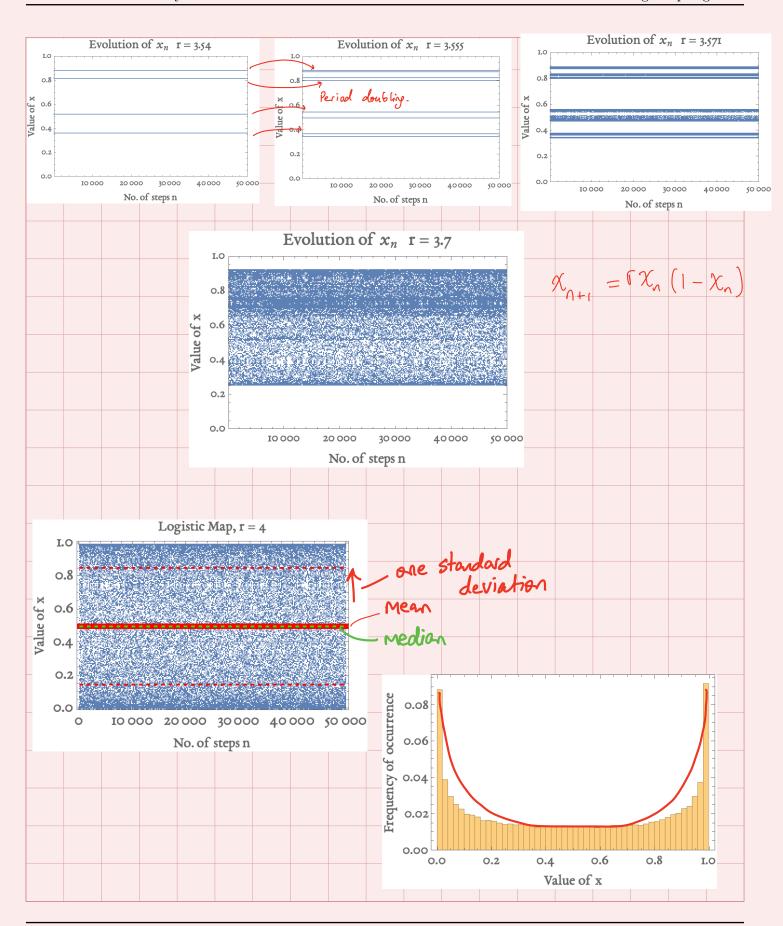

if $ \lambda $	(< 1	, M.	→ O	as 1 -	> 00
if [\(\)	> ,	η, .	→ ∞	asn-	→ <i>20</i>
Evaluate	Stabilit	y of	fixed	points	in the
				the Lo	renz map.
	Zn+1 :	=	2 Zn -	1 /2	
					<u>/</u>
-where is		•			y = X
X = [-	- 12 x - 1	1/2			200
$\sqrt{12\chi-1}$		1			
2x-1	= (1-x) -4 x+2				
	4± 116-		<u> </u>	- 2 ± √2	2" = 2-12
f'(x) =	2	f'(x) =	1 - 12	1x-1	ignore the 1.1
	f	(x) =	$-\frac{1}{2}(2$	1x-1, x-1, 2	
		=	1		
			12	x-1	

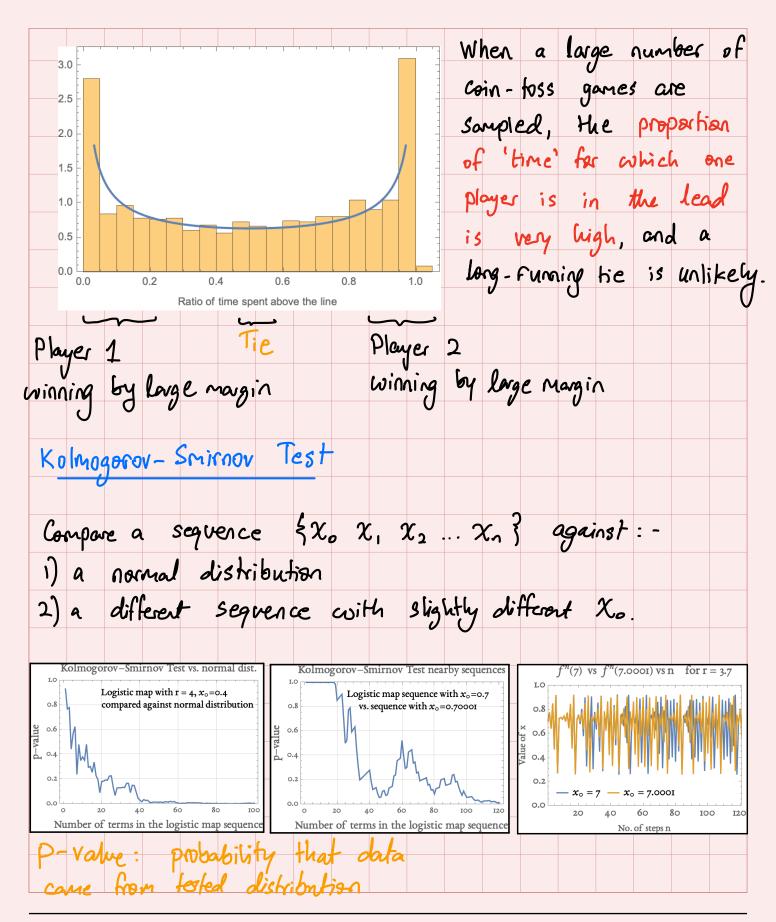


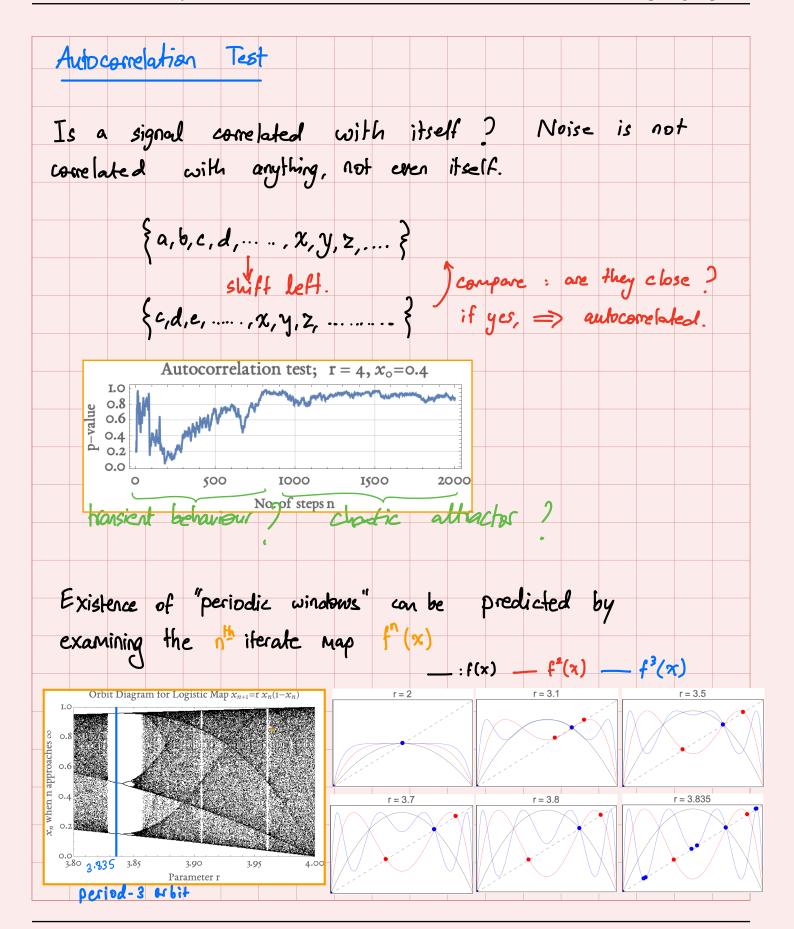


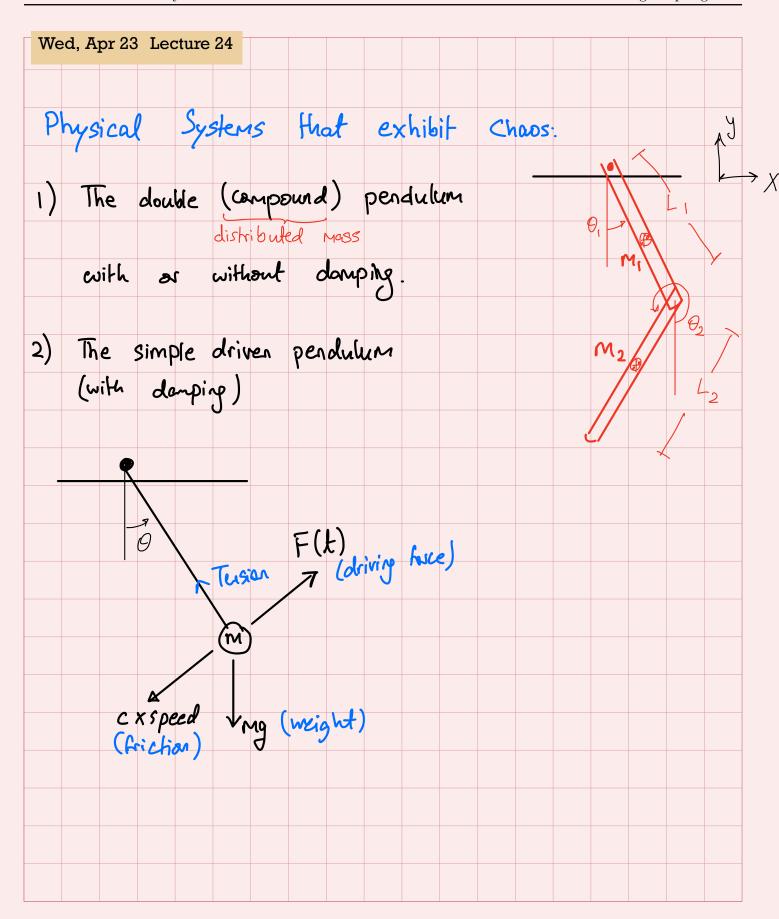

Wed, Apr	16	Lecture 22
----------	----	------------

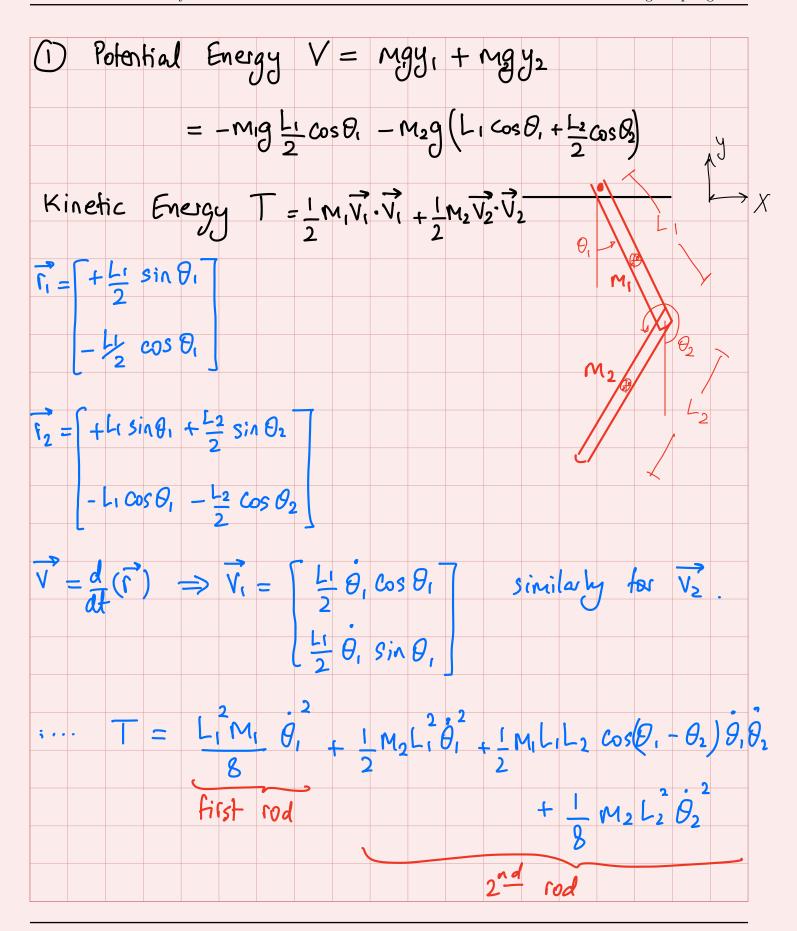

Wed,	Apr	16 L	ectu	re 22														
As	, ,	in	crea	ses	H	he	Ð	eria	d	of	t	he.	cyc	le	dou	bles cess		
													U		(c.,	2000	امد	
															Suc	درج ک	We w	
>		Dra.	, 1	4.0	અધ્ય	L	مانہ	م۲ مه	A	[٢	ماا	10	aicl		24-0	1	
-		viu	√ 1	ME	-	l	014	grav		(0)	Γ .	rne	\(\text{C}\)	יכון	1	May		
	1											1						
•																		
χ																		
	D	1			_			2										
		<u></u>			2>	(٥			- 1	>						
					•													pts
_		,			1.0		1.		1									7
Sin	rila	忆) (L	bifu	rca	<i>478</i> 1	0	liagi	,0 EV		هر	ho	oits	: pe	siod	-	obits
hut	-	بامه			ludes				_									orbit.
Owk		Sily) V C	ושטוכט		210	ME	_ ~	~		5 .			,	• • • •		
1		<u> </u>	1		h		مام		Lon	مظن	,	MAD		he h	21/0	2		
A		1 =	上		hou	J	2100	3	Lug	عراقا	'	7	1			•		
	1.6	юh	fer	Ss	plutia	1	to											
		J	, , ,		- (00) 10	-1/		('~			, ,)
								$) \lambda_{n}$	1+1	F	Gn (1-7	(u).	1	,	X _n =	χ_n	7
9	, _	X	(1-	x)				()
X	=	X	一 つ	(-	\Rightarrow		χ=	O	21	ly .	Sol	utie	M .					
										J	t:	-2						
A						ſ								•	\			
AH	-	1:	= 2	;	Si	NO	و		X	=	7	χ(1	X)			



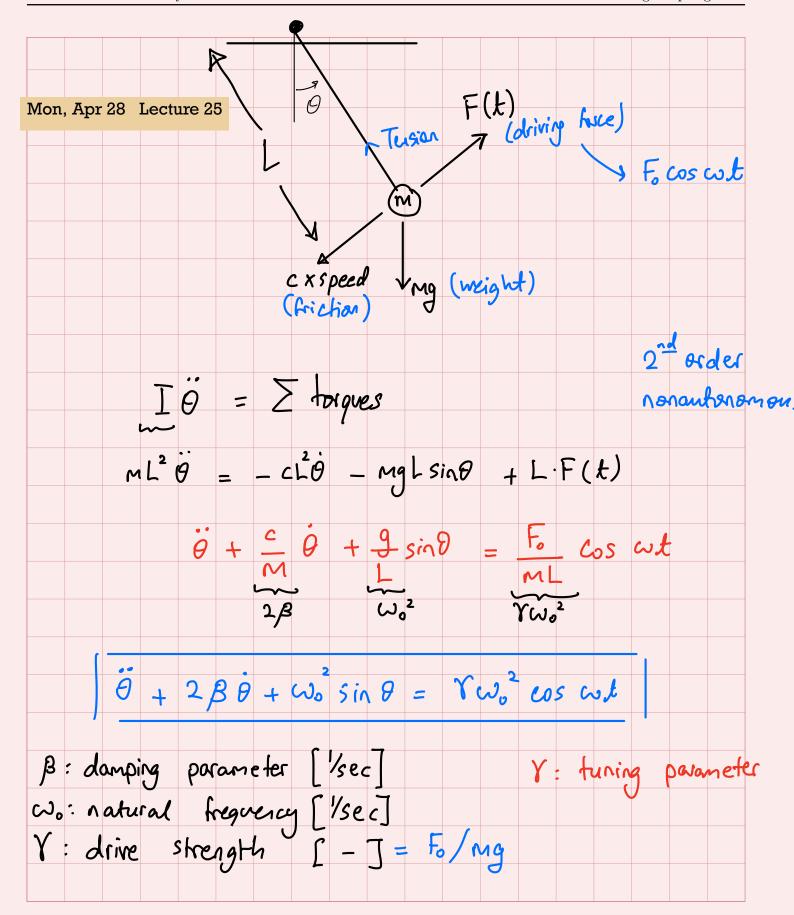


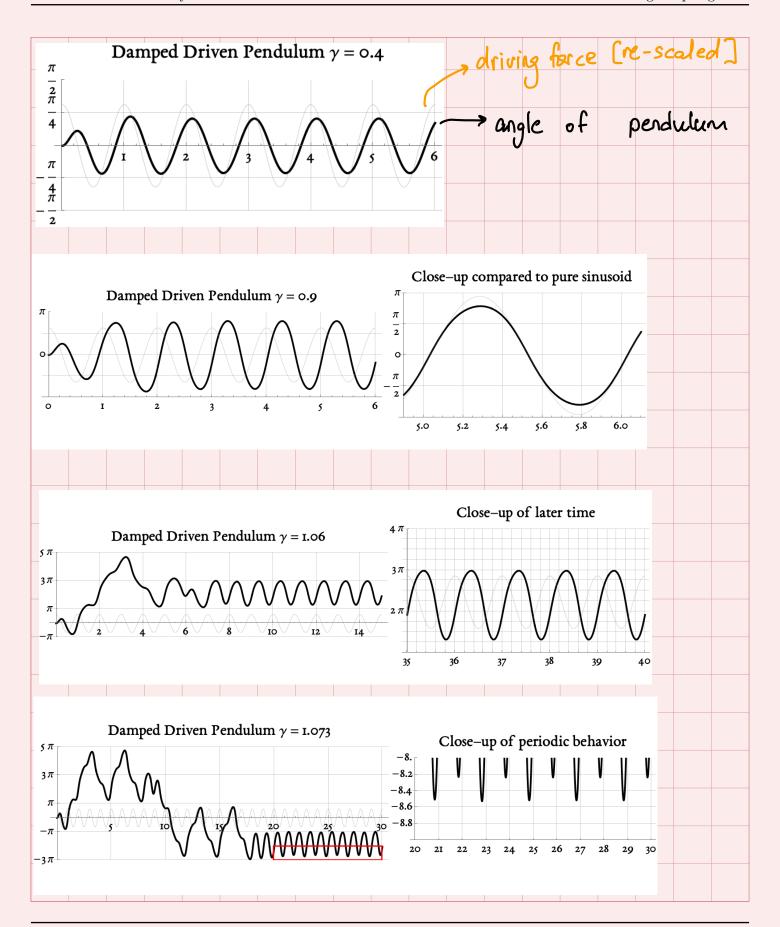


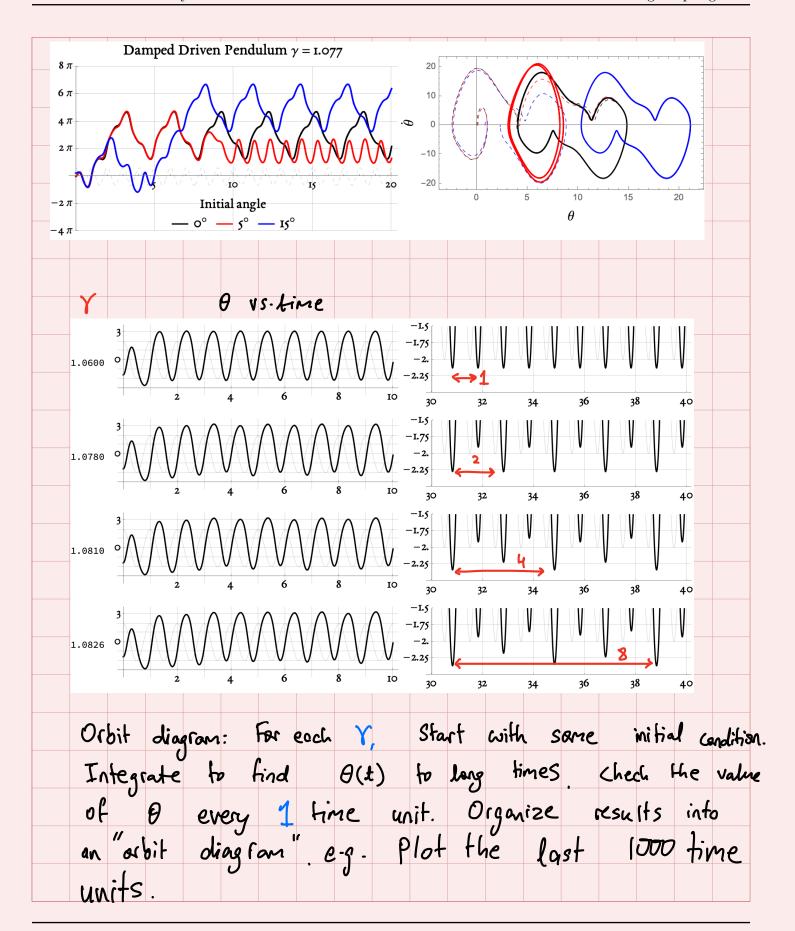


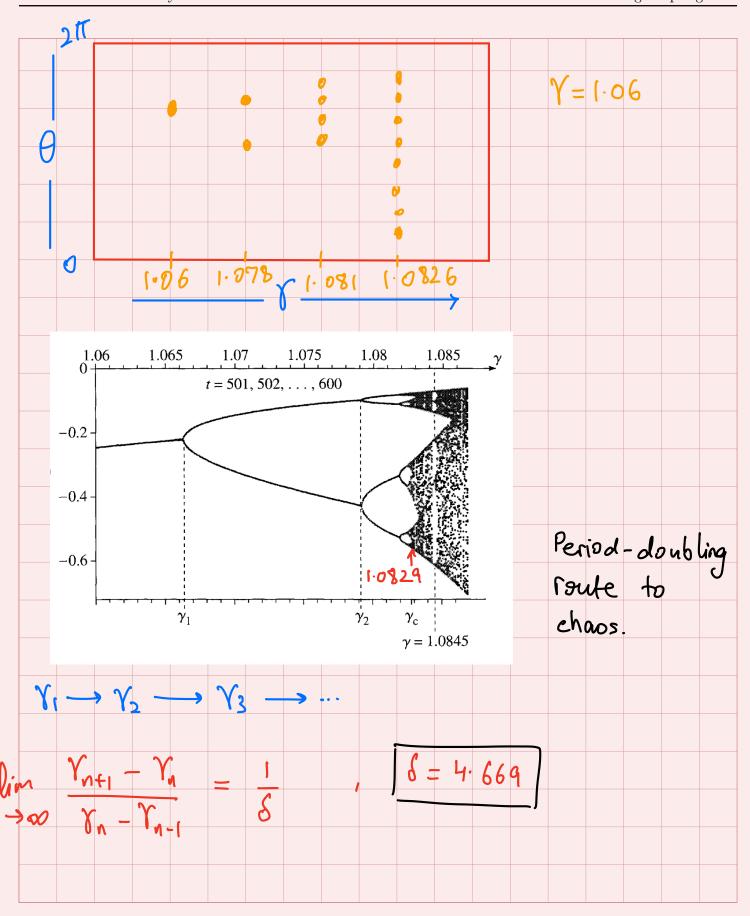


The probability density function that energes from the data — shaped like — is reministed of the probability distribution known as accoine:	is scert
of the probability distribution known as accsine	scert
of the probability distribution known as accsine	
	,
A distribution whose cumulative distribution (CDF	
is $\frac{2}{2}$ arcsin \sqrt{x} and its PDF is $\frac{1}{x}$	
π $\pi\sqrt{\chi(1-\chi)}$	
~ related to random walks	
each step: two possibilities: up (+1) } take n steps	
down (-1)	
probability 1/2	
over time, is it more likely that he	a)il
spend more time on one side of a	
on and of times about the will spend	7
amounts of time above & below?	
TO SEPS	
10,800 Step	5
cumulative area under curve is the probability that	900
person will win a long coin-toss game. If one is ze a fie will occur. => Ties are unlikely.	ν,
This process leads to an avoine distribution of outcomes	









d		<u> 2</u> L	-)		9	<u>L</u>	=	ا کم	N&/	1- CS	HNS.	ور ر	rafi	ve		e.g	· //_	cθ
dt	- (96	$\frac{1}{1}$		9	Θ_{i}		1	- δτ J	e	ter	vn S		(\			
			J			0		l							: تا	ξ(,	2 {	
Tw	0	nan	line	200	200	81	der		NBN	-ai	uton	đη	o us	C	liffe	æt	ial	eg.
	_	ea	ch	e	ua	rien		can	h	we		θ_{i}	Ò,	A'	θ	Ġ	, 8	2
	_	Co	up le	ed	_	- 4	on t		501	ve.	sep	avad	lely	-				
	_	ca	λ (Son V	erf	47	ס	fou	ſ	ve 1 st	810	ler	٥	DE	S			
un				ξ	0, (t)	$\dot{\theta}_2$	(t))	>						i .		
				[$\theta_{i}(t)$.)	02	(<i>\</i> +)	>									
	•		_															
	$\overrightarrow{\chi}$	=	f($\vec{\chi}$)		χ_1	=	f.	$(x_1$	X	χ ₃	χι	1)				
							_			(X1								
										$(\chi_1$								
							_		_	XI								
							744		J4		~ 2	~3	٨٩)				
	_	Pha	se	SDO	ce	is		4-0	dim	ensi	ena	l.						
	_	if	NBY	us	6	SN	rall	-ona	le	മ്മാ	m xia	nat	ion	((vefi	lly		
		the		c		1	b 0	ram	ه م	appi	$A\vec{\nabla}$				-	0)		
				٢	1,0	,		JU-, 31			/ ()							

Wed, Apr 30 Lecture 26 Nonlinear differential equations describe most of the physical world. Linear equations are usually approximations e.g. spring close to rest length; small deflections of a beam; constant g' for growity. The number of dimensions of phase space needed to describe neal systems dynamics can get very large. (degrees of freedom) Explicit time dependence adds another dimension to phase space. Most differential equations in physics are 2th or 4th order. Nonlinearity + "high"-dimensionality -> possibility of chaos. How nonlinear? A pendulum to large angles 0-sind How high-dimensional? n >2 is enough. -> Partial differential equations are 100-dimensional ordinary differential equations -> In the 19th century, it was thought that physics, in principle, had been solved. Initial conditions and differential egns in _____ future behavior out. "Laplace's Deman"

→	Qui	anti	LM	ام	ωsi	دع	or	nd	94	resa	<u>{</u>	ne	ativ	ity	C	omp	lica	ted	
	fhi	3	picl	ure	a a	t	٧٠	sma	U	ano	l	٧٠ ل	Lage	-	SCO	Jes	Bo	ıt	
					disc														
					tha														egir
	ÌS		ba	sed	(did	2	NOF		suf	fer	fr	9 11	•	suc	4	'CDM	oble	ms.
->	The	2 (disc	Cove	sy	0	F	z ho	0s ·		stri	ctly	a	٨	eath	ıem	atic	al	
	ph	ens	me	v ev	. '-	- i	n	num	ero	us	p	wysi	calle	ì	мры	iton	t	2940	Lions
																			ns ou
					ad														
					ougl														
	fu	etur	e	6	ehou	nein.		- e	ver	i f		you		500	W	the	٤ ،	900	SNIVE
	eg	yua	fior	15	and		fheir		sol	utis	ng	ar	ع	940	Vant	red	1 12	7	
	<u>و</u> ۲	rist	(and	60	1	uni	gve	•										
→	The	2	degl	re	9	f	unp	red	icta	bilig	hy	Ī5	so	gn	at	the	at	Chan	lic
	sy	ste	MS	_	- de	spi	ife	bei	ng	def	ew O	mis	fic,	nof	<u> [0</u>	nda	M -		•
	sh	o w	c	erfo	in	fe	atu	res	0	f	ron	don	1	proc	esse	S .	e.g.	Los	g-fim
	_																		ialks.

therefore learn that there is often an how long we can predict limit for even if the physics is well-understood phenomena Small uncertainties in measurement will propagate exponentially. Better measurement tools only delay inevitable divergence of initially nearby trajectories very Slightly. So, the guestian of whether we live in a deterministic would is complicated by the presence of chars equations that we know to be good models physical phenomena. (Sometimes, even in the simplest the world is deterministic — i.e. even if a function of current state of the world is - if often appears to behave the world if choos is present in the governing equations. randomly