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Abstract—The fluid motion produced by a periodic array of identical, axisymmetric, thin-
cored vortex rings is investigated. It is well known that such an array moves uniformly without
change of shape or form in the direction of the central axis of symmetry, and is therefore
an equilibrium solution of Euler’s equations. In a frame of reference moving with the system
of vortex rings, the motion of passive fluid particles is investigated as a function of the two
non-dimensional parameters that define this system: ε = a/R, the ratio of minor radius to
major radius of the torus-shaped vortex rings, and λ = L/R, the separation of the vortex rings
normalized by their radii. Two bifurcations in the streamline topology are found that depend
significantly on ε and λ; these bifurcations delineate three distinct shapes of the ‘atmosphere’
of fluid particles that move together with the vortex ring for all time. Analogous to the case of
an isolated vortex ring, the atmospheres can be ‘thin-bodied’ or ‘thick-bodied’. Additionally,
we find the occurrence of a ‘connected’ system, in which the atmospheres of neighboring rings
touch at an invariant ring of fluid particles that is stationary in a frame of reference moving
with the rings.
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1. Introduction

Circular vortex rings were first identified as solutions of the Euler equations by von Helmholtz [15,
32], who showed that a thin circular vortex filament will move uniformly along its central axis of
symmetry without change of shape or form. While observations of vortex rings very likely preceded
their mathematically rigorous definition in the 19th century — Northrup [25] points out that vortex
rings in the form of ‘smoke rings’ must surely have been recognized by people wherever tobacco
smoking was practiced — Helmholtz’s paper led to a flurry of activity from the leading minds of
nineteenth-century physics into the mathematical aspects of vortex rings, with a significant driver
of these early investigations being the vortex theory of atoms [34, 36].

Following Helmholtz’s seminal paper, a variety of vortex ring configurations have been investi-
gated using analytical, experimental, and computational research methods. The greatest amount of
attention has been paid to coaxial sets of vortex rings, i.e., arrangements in which all of the vortex
rings share a common central axis of symmetry and motion. Meleshko [22] compiled a bibliography
of the literature on coaxial vortex rings, which ran to 238 entries by the year 2010. Because this
system is axisymmetric, it is particularly amenable to a mathematical treatment in cylindrical
coordinates (ẑ, r̂, θ), where ẑ is the axial direction, r̂ the radial direction, and θ the azimuthal
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direction, as illustrated in Figure 1; we will use a hat to denote dimensional variables. In fact, the
equations governing the motion of coaxial vortex rings can be cast in canonical form [4, 9, 38], which
has led to a large body of literature on coaxial vortex rings from the Hamiltonian perspective.

Professor Alexei Borisov, to whom this memorial issue of RCD is dedicated, made several
important contributions to the study of vortex dynamics broadly and axisymmetric vortex rings
specifically. Although the Hamiltonian nature of the equations of vortex rings has been known for
a long time (implicitly in the works of Dyson [9] and Hicks [17], and explicitly in the work of
Vasilev [38]), Borisov et. al [4] were the first to systematically exploit the integrals of motion to
express these equations in reduced canonical form for N thin-cored vortex rings.

Coaxial sets of vortex rings can be observed in many physical and engineered fluid systems. In
a body-centered frame of reference, steady flow past a sphere, a disk, or a ring [1, 3, 28, 33] can
produce clear, coherent vortex rings. A standard method of producing repeatable coaxial vortex
rings in the laboratory mimics the blowing of smoke rings: a piston is used to pulse a jet from a
tube or through an orifice [18, 19]. Vortex-producing pulsed jets have drawn interest as a means
of propulsion for small underwater vehicles [23]. The wakes of many marine animals can be viewed
as a set of vortex rings being shed downstream of a swimming body [13]. Coaxial vortex rings
provide a mathematical framework for understanding the observed wakes of jellyfish in laboratory
experiments [8], and Siekmann [29] developed a formula for the thrust produced by an axisymmetric
body whose wake takes the form of successive coaxial vortex rings, analogous to von Kármán’s work
on two-dimensional wakes. Ellington’s [10] model of a hovering insect’s wake consists of successive
coaxial vortex rings. Heinzel [14] has proposed pulsating vortex rings, generated by a periodic flick
of the wings, as a possible method of communication between crickets.

Consider a toroidal-shaped region of fluid with non-zero vorticity embedded in an otherwise
irrotational fluid that encompasses all space. We will refer to the coherent region of non-zero
vorticity as the vortex core. Assume the fluid to be inviscid and, without any loss of generality,
to have unit density. Taking the limit in which the cross-sectional area of the vortex core goes to
zero, analogous to the planar point vortex limit, leads to a singularity in the Euler equations. In
contrast to the planar point vortex model, the singularity cannot be avoided by simply removing
the (infinite) self-induced velocity, so in practice the three-dimensional vortex ring is modeled as
having a finite-sized core [9].

Our discussion is focused on thin-cored circular vortex rings, as illustrated in figure 1. The major
radius of the vortex ring is R, and its cross-section — which we also assume to be circular to leading
order — has minor radius a. The ratio of minor (core) radius to major radius for a vortex ring,

ε ≡ a

R
, (1.1)

which we will call the core thickness ratio, parameterizes the relative shapes of circular vortex rings.
In this model, all of the vorticity in the fluid is confined to the inside of this torus. Vortex lines
are everywhere perpendicular to both the ẑ and r̂ axes, and ω is a scalar measure of the azimuthal
vorticity, i.e., ω̂ = (0, 0, ω̂). The circulation of the vortex ring is given by the integral Γ =

∫
ω̂ dẑ dr̂

carried out over the cross-section of the ring in the (ẑ, r̂) plane at a fixed value of θ. Characteristic
values of the quantities R and Γ can then be used to define the dimensionless system variables

r =
r̂

R
, z =

ẑ

R
, t =

t̂Γ

R2
, u =

ûR

Γ
, ω =

ω̂R2

Γ
. (1.2)

It has been shown [15] that an isolated circular vortex ring travels uniformly in the direction of
its axis without change of shape, at a velocity U1 that depends on the core thickness ratio ε (1.1).
The exact form of the velocity depends on the details of how the vorticity is distributed inside the
cross-section of the ring [27]. A common assumption for an axisymmetric vortex ring with a circular
core is to take ω/r = constant, so that Γ is independent of a and R; we also make this assumption.
Kelvin [35] is attributed with determining the formula for the velocity in this case, which is, in
non-dimensional form,

U1(ε) =
1

4π

(
log

8

ε
− 1

4

)
+O

(
ε2 log

1

ε

)
. (1.3)
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Fig. 1. An axisymmetric vortex ring in the cylindrical coordinate system (ẑ, r̂, θ), with ẑ the axial direction.
Cartesian coordinates (x̂, ŷ, ẑ) are shown for reference. The core radius is a and the ring radius is R. A 60◦

arc of the ring has been removed from the schematic for illustration purposes.

Equation (1.3) shows that as ε→ 0, the self-induced speed of a vortex ring tends to infinity and we
no longer have an admissible solution to the Euler equations. For finite-thickness vortex rings, the
self-induced speed U1 decreases with increasing ε (see figure 4). Later authors, such as Dyson [9] and
Fraenkel [11], have expanded U1 in higher orders of ε, and others have generalized (1.3) to include
families of vortex rings with arbitrary distributions of vorticity across the cross-section. There is
a considerable body of work on ‘thick-cored’ isolated vortex rings that relaxes the assumption
a� R; see, for example, the family of vortex rings ranging from the infinitesimally thin-cored to
the ‘spherical’ studied by Norbury [24].

The leading-order analysis of thin-cored vortex rings, exemplified by (1.3) and used throughout
this work, dates back to the time of Kelvin [35], and has been found to give surprisingly good results
when compared to theories of finite-thickness vortex rings developed by later authors. Fraenkel [11]
used asymptotic expansions to obtain the O(ε2 log ε−1) term in (1.3), but the latter makes up
only 1% of the value of U1 at ε = 0.2. Moreover, Norbury [24], in his work on truly ‘thick-cored’
vortex rings, found that Fraenkel’s asymptotic results show good agreement with the numerically
computed properties of ‘thick-cored’ vortex rings at a core thickness parameter, ε, of 0.2. Thus,
we assume that our work, which is derived from the assumption ε� 1, is numerically accurate up
to ε ≈ 0.2; at larger values of ε, the assumption of a circular core is no longer valid ([27] p. 197),
and the thickness ratio is properly characterized by a definition more general than (1.1); see, e.g.,
equation (2.7) in Ref. [24]. For this reason, and because the higher-order terms in (1.3) may no
longer be negligible, our work should be considered quantitatively approximate for ε & 0.2.

In the frame of reference of a steadily moving, thin-cored vortex ring, one can, in general, identify
three distinct regions of fluid motion: (1) the core of the vortex ring, consisting of the fluid with
non-zero vorticity, which moves together as one coherent body for all time; (2) the potential flow
surrounding the core that also maintains its identity as a coherent region moving together with the
core for all time, referred to variously as the vortex ‘atmosphere’ [35], the vortex ‘body’ [37], or
the ‘vortex bubble’ [31]; and (3) the remainder of the potential flow, which extends to infinity and
consists of fluid that interacts closely with the vortex ring for, at most, a finite time duration. This
outer potential flow can be further divided into two regions: the fluid passing through the center
of the vortex ring, and the fluid that passes around the outside of the vortex ring. As discussed in
Section 2, the presence of and distinction between these various regimes depends on the relative
core thickness, ε [16].

Consider now two thin-cored coaxial circular vortex rings with major and minor radii Ri and ai,
respectively, for i = 1, 2. When these two coaxial vortex rings interact with each other, in general
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their radii change in time under their mutual influence. By mass conservation and Helmholtz’s
vorticity theorems [15, 32], the quantities

B2
i ≡ Ri(t) a2

i (t) = constant (1.4)

are integrals of the motion ([9] Art. 39), remaining constant throughout any time-dependent changes
in the ring and core radii Ri and ai. It is natural therefore to parameterize interacting vortex rings
by the Bi. For Bi to be conserved, the a2

i must vary concurrently with variations in Ri. Thus the

core thickness ratio for each vortex, εi = ai/Ri, must vary as R
−3/2
i .

In their study of two interacting vortex rings, Borisov et. al [4] examined how the relative core
thickness ratio β = B2/B1 changes the interaction dynamics, but the absolute core thickness ratios
εi are important parameters to consider in their own right. If we start with small εi and assume,
as Borisov et. al [4] did, that the mutual interaction of the vortex rings will be such that ai � Ri
remains true for all time, then the vortex rings will interact as infinitely thin-cored vortex filaments.
This assumption is qualitatively (and to some extent quantitatively) appropriate for the purpose of
determining the interaction dynamics of vortex rings as long as the absolute distance between the
two vortices relative to the major radii is much greater than the core thickness ratio. However, by
not explicitly considering changes in εi, this approach may not fully capture the range of possible
fluid motions surrounding the vortex rings. The changes in εi that may occur during interaction
of the vortex rings can be very large; for example, for one of the parameter values investigated by
Borisov et. al [4] (β = 1, γ = 4/5, P = 2), εi varies from ≈ 0.25 to ∞ as Ri → 0. For the flow in
the vicinity of multiple interacting vortex rings, then, it is natural to conjecture that the εi will
be important parameters determining the types of possible fluid motions, even when the specific
values of εi may be negligible for the purpose of modeling the vortex dynamics.

The types of fluid motion in the vicinity of two interacting vortex rings is, in general, unsteady,
and the problem does not readily admit to an analytical treatment [2]. Alternatively, a periodic
array of identical axisymmetric vortex rings embedded in potential flow provides a low-order,
mathematically tractable model for studying the motion of fluid under the influence of multiple
vortex rings. Vasilev [39], and later Levy & Forsdyke [20], showed that each vortex in such an array
moves at a constant velocity U∞ with no change in the radius of the ring, R. By (1.4), ε will not
change either. Thus, the problem can be rendered steady in an inertial frame of reference moving
at the same speed as the array of vortex rings. It is this problem that we take as the basis for our
analysis in this manuscript.

The manuscript is organized as follows. In section 2, the known results for an isolated, thin-
cored circular vortex ring are summarized, including the appearance of ‘thin-bodied’ and ‘thick-
bodied’ vortex ring atmospheres. We also show, apparently for the first time, that the scaling of
this system in the vicinity of the bifurcation is similar to that for a one-dimensional saddle-node
bifurcation. In section 3, we consider a periodic array of identical, thin-cored, coaxial vortex rings.
In section 3.1, we give the outlines of the proof, originally due to [39] and [20], of the existence
of a stationary solution, and we present the speed of self-propagation of such an array of vortex
rings. Section 3.2 presents the ‘thin-body’ to ‘thick-body’ bifurcation for the periodic array, and
section 3.3 discusses the bifurcation that leads to the ‘connected’ vortex ring system. Analogous
to the single-ring system, these bifurcations give a scaling similar to that for a one-dimensional
saddle-node bifurcation. Conclusions are presented in section 4.

2. A single thin-cored, axisymmetric vortex ring

The fluid mechanics of a single axisymmetric vortex ring are well known [9, 16, 27, 35], and we
repeat the relevant analysis of that system here for context. The equations of motion for vortex
rings arise from the Euler equations of motion for an inviscid and incompressible fluid, cast in
an axisymmetric coordinate system in the vorticity-streamfunction (ω − ψ) formulation. The axis,
denoted by the z direction, is aligned with the symmetry axis of the vortex ring(s), and r > 0
extends in the radial direction, again as shown in figure 1. Generally, flows without swirl, i.e.,
without motion in the azimuthal direction, are considered. The equations of motion for the vorticity
ω and the streamfunction ψ are thus given in terms of the system of partial differential equations

∂ω

∂t
+

1

r

∂ψ

∂z

∂ω

∂r
− 1

r

∂ψ

∂r

∂ω

∂z
= − 1

r2

∂ψ

∂r
ω
∂ω

∂r
, (2.1a)
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(a) (b) (c) (d) (e)

Fig. 2. Representative streamlines in the co-moving frame of reference for ε = (a) 0.005, (b) 0.01, (c) εc ≈
0.0116, (d) 0.02, and (e) 0.05; arrows indicate direction of flow. In (a,b) the vortex ring is ‘thin-bodied’, and
in (d,e) it is ‘thick-bodied’. Axisymmetric fixed points in this co-moving frame are labeled P,Q,R; panel (c)
shows the special case in which there is a single co-moving point P ′ at (z̃, r) = (0, 0). Compare (a) and (e)
with figure 10.2-2 of Ref. [27].

∂

∂r

(
1

r

∂ψ

∂r

)
+

1

r

∂2ψ

∂z2
= −ω. (2.1b)

Given a streamfunction ψ that satisfies (2.1), the motion of a passive fluid particle can be determined
from

uz =
1

r

∂ψ

∂r
, ur = −1

r

∂ψ

∂z
. (2.2)

The streamfunction ψ due to an infinitesimally thin vortex filament, or vortex line, with unit
circulation can be derived from the Biot-Savart law, which states that the velocity induced at x by
a vortex line C parameterized by y is

V(x) =
1

4π

∫
C

dy × (x− y)

|(x− y)|3
, (2.3)

where dy is a differential element of the vortex line y, and the integral is carried out over
the entire length of the vortex line C. The resulting velocity is dimensionless according to the
nondimensionalization scheme in (1.2). For a circular vortex ring with radius one, this velocity can
be expressed, in nondimensional axisymmetric cylindrical coordinates (z, r), with the help of the
streamfunction [27]

ψ(z, r; z0(t)) =

√
r

2π

((
2

k0
− k0

)
K(k0)− 2

k0
E(k0)

)
with k0 =

√
4r

(z − z0(t))2 + (r + 1)2
,

(2.4)
where K and E are the complete elliptic integrals of the first and second kind, respectively. The
thickness ratio ε does not enter into the equation for ψ explicitly because application of the Biot-
Savart law is an appropriate first-order approximation for the velocity induced by a thin vortex ring
at points far from the ring itself. This assumption was used by Hicks [16] (p. 605) and Saffman [27] to
perform the calculations that follow. Higher-order expansions of (2.4) are available in a coordinate
system centered at the vortex core center (e.g., equation 9 of section 10.2 in [27]). Note, however,
that because the propagation speed of a vortex does depend on ε to leading order, as shown in
(1.3), the flow described by (2.4) does depend (implicitly) on ε through motion of the vortex center
at z0.

Because a vortex ring has a (time-independent) nonzero self-induced velocity U1 (1.3), the axial
position of the ring, z0, is generally a function of time, rendering ψ a time-dependent function. A
transformation to the co-moving reference frame z̃ = z − z0 = z − U1t, with U1(ε) given by (1.3),
yields the steady streamfunction

ψ̃(z̃, r; ε) = ψ
(
z̃ + U1(ε) t, r;U1(ε) t

)
− 1

2
U1(ε) r2, (2.5)

for which z̃0 = 0, i.e., the center of the vortex ring remains at the origin in the co-moving frame for

all time. Isolines of ψ̃ are (steady) streamlines in a co-moving reference frame.

The thickness ratio ε (1.1) parameterizes the range of possible topologies of the co-moving fluid
motion surrounding a single vortex ring [16]. For sufficiently small values of ε, there exists an
axisymmetric line of fluid particles near the vortex core that moves with the same velocity as the
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Fig. 3. Variation of vertical distance h and horizontal distance d, as labeled in figure 2. Dashed lines show
limiting behavior as ε→ ε−c and ε→ ε+c .

vortex ring. This co-moving line appears as a stationary saddle point in the co-moving frame of
reference when viewed in axisymmetric coordinates (z̃, r), shown as point P in figure 2(a,b). The
vortex ring ‘atmosphere’, which identifies all fluid particles that move together with the vortex core,
is bounded by the axisymmetric streamline in the co-moving frame that joins the stationary saddle
point to itself; that is, the atmosphere is bounded by the homoclinic orbit of the saddle point in the
co-moving frame. The cross-section of this atmosphere in the (z̃, r) plane appears as a tear-drop
shape. Any fluid particles outside the homoclinic orbit, or separatrix, bounding the atmosphere
will move away from the vortex ring as t→∞, whereas those particles inside this separatrix will
remain near the vortex ring for all time.

Definition 2.1. A thin-bodied vortex ring is one whose ‘atmosphere’ is bounded by a homoclinic
orbit in the (z̃, r) plane, forming a torus-shaped structure in three dimensions.

This topology has been called the toroidal configuration by Hicks [16].

For large values of ε, the co-moving fluid particles consist of two isolated points lying on
center axis of symmetry, appearing as saddle points Q,R in figure 2(d,e). In this case, the vortex
atmosphere is bounded by the heteroclinic orbit that connects these saddle points, giving an ellipse-
like region that includes a portion of the z axis.

Definition 2.2. A thick-bodied vortex ring is one whose ‘atmosphere’ is bounded by a hetereoclinic
orbit in the (z̃, r) plane, forming a singly-connected structure in three dimensions.

This topology has been called the singly-connected configuration by Hicks [16]. It must be
emphasized that it is possible for vortex rings to be ‘thick-bodied’ under this description while
continuing to be ‘thin-cored’; indeed, this paper is concerned exclusively with thin-cored vortex
rings.

Hicks [16] appears to have first asked the following question: is there a value of ε for which
particles at the exact center of the vortex ring are moving with the same velocity as the ring? The
speed u0 induced by a (thin-cored) vortex ring in the axial direction along the symmetry axis is
known to be [27]

u0 ≡ lim
r→0

uz(z, r)
∣∣∣
z=0

=
1

2

1

(z2 + 1)3/2)

∣∣∣∣
z=0

=
1

2
. (2.6)

The point (z, r) = (z0, 0) is assumed to be sufficiently far from the vortex core that the velocity
induced here by the ring is independent of ε (to leading order). The self-induced velocity of the
ring, U1(ε) (1.3), can then be equated with (2.6) to calculate a critical value of ε, which we call εc,
for which the fluid at the center of the ring at (z, r) = (z0, 0) will move with the same axial velocity
as the vortex ring itself, namely

U1(εc) = u0 =⇒ 1

4π

(
log

8

εc
− 1

4

)
=

1

2
, (2.7)
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Fig. 4. (a) Translating speed of a vortex ring array, U∞(ε, λ) (3.4), for the isolated vortex ring (λ→∞) and
two periodic arrays with λ = 1, 2. Circles mark the examples shown in figure 2; squares mark the examples
shown in figure 7. Filled markers indicate the critical value of ε separating thin-bodied from thick-bodied
vortex rings at the corresponding value of λ. (b) Contribution to the velocity of a vortex ring induced by an
infinite number of neighbors to the left and right.

giving [16, 27]

εc = 8 exp

(
−2π − 1

4

)
≈ 0.0116. (2.8)

The co-moving streamline pattern corresponding to this critical thickness ratio is shown in
figure 2(c).

When ε < εc, the vortex ring is ‘thin-bodied’ and carries a torus-like atmosphere of particles
around it, with a ‘hole’ in the middle. When ε > εc, the vortex ring is ‘thick-bodied’ and all of the
fluid enclosed by the ring in the (z0, r < 1, θ)-plane is contained in the vortex atmosphere, moving
together with the ring for all time. As ε increases above εc, the thickness of the vortex atmosphere
(in the z direction) increases.

As shown in figure 2(a,b), h is the distance between the central axis and the co-moving stagnation
point in the plane of the ring, labeled point P . Given any value of ε < εc, this distance can be found
by solving the equation

∂

∂r
ψ̃(z̃, r; ε)

∣∣∣∣
z̃→0
r=h

= 0 (2.9)

to determine h. Hicks [16] was the first to give (2.9) in terms of elliptic integrals, and he describes
a procedure for solving this implicit equation (see [16], pp. 607-611).

As shown in figure 2(d,e), d is the distance between the heteroclinic points Q and R and

represents the (axial) extent of the vortex atmosphere. The dividing streamline, given by ψ̃ = 0,
can be used to determine d by solving

ψ̃(d/2, r; ε)
∣∣∣
r→0

= 0 (2.10)

with any given value of ε > εc. Hicks [16] gives a closed-form expression for the solution to (2.10)
by means of polynomial approximations to elliptic integrals; the reader is referred to [16] for this
analytical treatment.

Figure 3 shows h and d as functions of ε, determined numerically from (2.9) and (2.10),

respectively. As ε increases from a small value up to εc, h decreases as (εc − ε)1/2. When ε > εc,
d is zero because the homoclinic point P no longer exists; instead, two heteroclinic points Q and
R appear on the central axis, and the distance between them, d, varies as (ε− εc)1/2. Both the
bifurcation leading to the destruction of the critical point P and that leading to the creation of two
critical points Q and R therefore serve as axisymmetric analogs of the saddle-node bifurcation (see,
e.g., [30]). The destruction and creation of degenerate critical points observed here is, in fact, the
expected behavior for codimension-1 bifurcations near the axis in an axisymmetric flow [5], which
are known to scale as the square root of the bifurcation parameter.
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3. An infinite array of thin-cored, coaxial vortex rings

Consider now an infinite array of axisymmetric, thin-cored, circular vortex rings equally spaced
along the z axis and having the same radius R. Each vortex ring has the same cross-sectional radius
a, and their cross-section is assumed to be circular to leading order in ε = a/R. Let the distance
between two successive vortex rings along the ẑ axis be L, and define λ ≡ L/R. Suppose also that
L� a (i.e., λ� ε), so that the mutual influence of the vortices can be modeled accurately by
infinitesimally thin vortex filaments interacting with each other. The vortices are embedded in an
inviscid fluid that fills all of space and obeys Euler’s equations in axisymmetric form (2.1).

3.1. Existence of a stationary solution

Proposition 3.1. Equations (2.1) admit the following stationary solution

ψ̃∞(z̃, r; ε, λ) = ψ∞(z, r;λ)− 1

2
U∞(ε, λ) r2, (3.1)

with z = z̃ + U∞t, where ψ∞ is the streamfunction due to an infinite array of equally spaced,
identical, coaxial, infinitesimally thin circular vortex filaments of unit intensity, and U∞(ε, λ) is
the (constant) speed of translation, in the axial direction, of the infinite system of vortex rings. The
function ψ∞ can be constructed from a Green’s function as

ψ∞(z, r;λ) =

∫
Ω
G∞(z, r; z̄, r̄, λ)ω(z̄, r̄) dz̄ dr̄, (3.2a)

G∞(z, r; z̄, r̄, λ) =

+∞∑
j=−∞

G(z, r; z̄ + jλ, r̄), (3.2b)

where

G(z, r; ζ, r̄) =

√
r r̄

2π

((
2

k
− k
)
K(k)− 2

k
E(k)

)
with k =

(
4r r̄

(z − ζ)2 + (r + r̄)2

)1/2

; (3.2c)

the functions K and E are the complete elliptic integrals of the first and second kind, respectively.
The function ψ∞ is defined on the periodic strip Ω = {(z, r) : (z − z0(t)) ∈ (−λ/2,+λ/2), r > 0}.
For circular, infinitely thin-cored axisymmetric rings, the vorticity distribution ω(z, r) can be
approximated as the two-dimensional delta function δ(z − z0, r − 1), in which case

ψ∞(z, r;λ) = G∞(z, r; z0, 1, λ). (3.3)

Proof 3.1. A full proof was given by Vasilev [39] and Levy & Forsdyke [20]. Here, we sketch the
outlines of the proof for reference; the reader is referred to the original works [20, 39] for a complete
discussion.

Lemma 3.1. The infinite series in Eq. (3.2b) is convergent in the periodic strip Ω except at the
singular point (z0, 1) for the case ω(z, r) = δ(z − z0, r − 1).

This Lemma follows from the fact that the streamfunction due to a single infinitesimally thin-
cored vortex ring is well-defined everywhere except at the ring itself, and that the additional
contribution from each successive vortex ring in the summation (which are all outside Ω) decays
as 1/z.

Lemma 3.2. A system consisting of a periodic array of identical, coaxial, axisymmetric, infinites-
imally thin circular vortex rings translates uniformly with a constant, finite, speed U∞(ε, λ) in the
axial direction.

This Lemma can be shown using direct calculation. Let

U∞(ε, λ) = U1(ε) + U∗∞(λ), (3.4)

where U1(ε) is the translating speed of a single vortex given by (1.3) and U∗∞(λ) is the contribution
to the translational speed from the remaining vortex rings outside Ω. To calculate U∗∞, consider a
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vortex ring with unit radius located at the axial position z0. Then, the instantaneous streamfunction
governing the motion of this vortex ring will be given by the deleted Green’s function G∗∞, in which
the j = 0 term is dropped from (3.2b), i.e.,

ψ∗∞(z, r;λ) = G∗∞(z, r; z0, 1, λ). (3.5)

The axial velocity induced at (z0, 1) is then given by the radial derivative of the deleted Green’s
function or, equivalently, by a direct summation of infinite Biot-Savart integrals evaluated at one
of the vortex rings’ locations [20, 39], resulting in

U∗∞(λ) =
1

r

∂ψ∗∞
∂r

∣∣∣∣
r=1,z=z0

=
∂

∂r
G∗∞(z0, r; z0, 1, λ)

∣∣∣∣
r=1

=
1

2π

∞∑
n=1

∫ 2π

0

1− cosφ

(2(1− cosφ) + n2λ2)3/2
dφ. (3.6)

The variation of U∗∞(λ) with λ is shown in figure 4(b), and the resulting influence on U∞(ε, λ) is
shown in figure 4(a). For λ� 1, the contribution to a vortex ring’s velocity from its neighbors is
small, and we have the limit

lim
λ→∞

U∗∞(λ) = ζ(3)λ−3, (3.7)

where ζ(n) is the Riemann zeta function.

The expression for U∗∞(λ) in (3.6) was found independently by Vasilev [39] and Levy &
Forsdyke [20]. In practice, the infinite sum can be approximated by a truncated series in which
the influence of pairs of vortex rings is symmetrically added, i.e., the deleted Green’s function
appearing in (3.5) can be approximated as

G∗N (z, r; z0, 1, λ) =

+N∑′

j=−N
G(z, r; z0 + jλ, 1); (3.8)

the prime on the summation indicates omission of the term j = 0. The approximated velocity
U∗∞(λ;N) converges quickly with the number of pairs N included in the truncated sum for all
but the smallest values of λ. In this work, a convergence study was conducted and it was found
that increasing N > 500 did not change any of the results meaningfully. The convergence is very
rapid for λ & 0.25; for lower values of λ, more sophisticated methods of computing periodic Green’s
functions, such as those reported in [26], could be used instead.

Lemma 3.3. A periodic array of identical, coaxial, axisymmetric, infinitesimally thin circular
vortex rings propagate with no change in their radii.

The radial velocity of one of the vortex rings is determined by evaluating the limit of (2.2),

ur(z0, 1) = −1

r

∂ψ∗∞
∂z

∣∣∣∣
z→z0,r→1

= −1

r

∂

∂z

∣∣∣∣
z→z0
G∗∞(z, r; z0, 1, λ). (3.9)

Only the deleted Green’s function (3.5) is involved because the self-induced radial velocity from the
ring centered at z = z0 is zero, corresponding in (3.2b) to the term with j = 0. The contributions
from the remaining terms cancel pairwise,

∂

∂z

∣∣∣∣
z→z0
G(z, r; z0 + jλ, 1) +

∂

∂z

∣∣∣∣
z→z0
G(z, r; z0 − jλ, 1) = 0 ∀ i ∈ N, (3.10)

and there is no radial component of velocity at the location of the vortex ring core. Because each
vortex ring is indistinguishable from the others, this holds true for all vortices in the infinite array.
Hence, there is no change in the radii of the vortex rings.
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Fig. 5. Axial speed (in the absolute frame of reference) induced at the central axis r = 0. (a) Speed as a
function of position along the z axis for a vortex ring array centered instantaneously at z = 0 for λ = 1, 2.5, 3
and λ→∞. (b) Speed induced by a periodic array of vortex rings at the center of a vortex ring, u∞0 (3.12),
and at the midpoint (along the axis) between two successive rings, u∞1/2 (3.14), as a function of λ. The dashed

line shows u0, the axial centerline speed induced by a single vortex ring.

The axial velocity induced by an array of vortex rings on their common axis z is given
instantaneously by

uz(z, 0;λ) = lim
r→0

∂ψ∞
∂r

=

n=+∞∑
n=−∞

1

2(1 + z2 − 2nλz + n2λ2)3/2
; (3.11)

the expression on the right-hand-side can be derived by considering an appropriate limit of the
Biot-Savart law [27] for an infinitesimal filament. The dependence of this axial centerline velocity
on the array spacing is shown in figure 5(a). As λ decreases from the λ→∞ isolated ring limit,
the mean of uz(z, 0;λ) increases while the deviation from that mean decreases and becomes more
sinusoidal.

3.2. ‘Thin-bodied’ and ‘thick-bodied’ arrays

As discussed in section 2, the atmosphere of a single thin-cored axisymmetric vortex ring can
have two distinct topologies in the co-moving frame — ‘thin-bodied’ or ‘thick-bodied’ — as a
function of the core thickness ratio ε, with the bifurcation in the topology occurring for ε = εc.
This topological bifurcation also occurs for a periodic array of vortex rings, but in this system the
critical value of the core thickness ratio is a function of the spacing ratio, λ. This departure from the
isolated ring behavior comes as a result of two changes. First, the propagation speed of a periodic
vortex ring array is given not just by U1 (1.3) but by U∞(ε, λ) = U1(ε) + U∗∞(λ), with U∗∞ defined
in (3.6). Second, the axial speed at the center of one of the vortex rings, (z̃, r) = (jλ, 0)∀j ∈ Z,
is no longer given by (2.6), because the influence of the ring’s neighbors needs to be taken into
account. The axial speed induced by an array of vortex rings at (z̃, r) = (jλ, 0)∀j ∈ Z can be found
by substituting z = 0 in (3.11), which gives

u∞0 (λ) ≡ uz(0, 0;λ) =
∞∑

n=−∞

1

2 (1 + n2λ2)3/2
. (3.12)

The values of the parameters (λ, ε) for which a fluid particle at the center of one of the vortex rings
is stationary (in a frame of reference moving with speed U∞) is given by solutions to the equation
U∞ (λ, εc1) = u∞0 (λ) which, by combining (1.3), (3.6), and (3.12), leads to

εc1(λ) = 8 exp

(
−4π (u∞0 (λ)− U∗∞(λ))− 1

4

)
. (3.13)

As shown in figure 6, this λ-dependent curve delineates the appearance of ‘thin-bodied’ and ‘thick-
bodied’ streamline topologies in the period vortex ring array. At large values of λ, the effect of
neighboring vortex rings attenuates because U∗∞ → 0, and as a result εc1 → εc as λ→∞.
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d
e

Fig. 6. Bifurcations in the streamline topology in the (λ, ε) parameter space. The appearance of ‘thin-bodied’,
‘thick-bodied’, and ‘connected’ atmospheres are delineated by the curves εc1(λ) (3.13) and εc2(λ) (3.15); εc2
is dashed for ε & 0.2 to indicate that the ‘thin-cored’ assumption becomes inaccurate for large ε. Points i–
vi correspond to the streamline patterns shown in figure 7 for λ = 2; points labeled a–e correspond to the
streamline patterns shown in figure 2 for which λ→∞. The horizontal dashed line shows εc (2.8).

(i) (ii) (iii)

(iv) (v) (vi)

Fig. 7. Representative streamlines in the co-moving frame of reference for λ = 2 and ε = (i) 0.005,
(ii) εc1(2) ≈ 0.00745, (iii) 0.01, (iv) 0.05, (v) εc2(2) ≈ 0.109, and (vi) 0.2; arrows indicate direction of flow. In
(i) the vortex ring is ‘thin-bodied’, in (iii, iv) it is ‘thick-bodied’, and in (vi) is it ‘connected’. Panels (ii, v)
show the special cases in which there is a single co-moving point at (ii) (z̃, r) = (0, 0) and (v) (z̃, r) = (λ/2, 0),
respectively.

Figure 7(i)–(iii) illustrate the changes in the topology of streamlines in the co-moving frame of
reference as ε is increased through εc1 . For ε < εc1 , the atmosphere of each vortex ring is ‘thin-
bodied’ according to Definition 2.1. The homoclinic point P is located a vertical distance h from
the centerline axis, and the fluid near this axis remains relatively undisturbed, ‘left behind’ by
the passage of vortex rings. At the critical value ε = εc1(λ), the homoclinic orbit bounding the
vortex atmosphere touches the z axis at a single point, P ′. As ε increases from εc1(λ), each vortex
ring becomes ‘thick-bodied’ according to Definition 2.2, with a vortex atmosphere bounded by a
simply-connected, ellipse-like surface that encompasses a (finite) portion of the z axis.

In the neighborhood of the critical point, the location(s) of the saddle point(s) again exhibit
scalings like that for a saddle-node bifurcation, as noted in section 2 for the isolated vortex ring.

As ε→ ε−c1(λ), the point P approaches the centerline axis asymptotically as h ∼ (εc1 − ε)1/2, as

shown in figure 8. If instead ε→ ε+
c1(λ), the two saddle points at Q and R approach each other

asymptotically as d ∼ (ε− εc1)1/2. Locally, Q looks like a one-dimensional ‘saddle’ and R a one-
dimensional ‘node’ on the z axis.

Qualitatively, this change in co-moving streamline topology with varying ε is similar to that
shown in figure 2 for the isolated vortex ring, but the details of the streamline pattern now depend
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Fig. 8. Horizontal and vertical spacings of the co-moving points P , Q, R, and S for the case λ = 2 shown
in figure 7. Dashed lines give the scaling laws indicated in each panel; solid lines show numerically computed
values for (a) h, the vertical position of P , (b) d, the horizontal distance between Q and R, and (c) h′, the
vertical position of S. Note that the horizontal axis runs continuously across all three panels from ε = 0 to 0.5.

on the periodic spacing λ. In the isolated-vortex limit, λ→∞, we find that εc1 → εc, which is to
be expected because, at large λ, the effect of U∗∞ attenuates to zero and u∞0 tends to 1/2, which
means that (3.13) tends to (2.8). In the opposite limit, λ→ 0, the value of εc1 drops off steeply, as
shown in fig. 6, revealing that for closely-spaced vortex ring arrays the threshold for a ring to be
‘thick-bodied’ is low and can be easily attained by an array of vortex rings even with ε� 1. For
example, the thick-bodied vortex ring array in figure 7(iii) and the isolated thin-bodied vortex ring
in figure 2(b) both have ε = 0.01.

3.3. ‘Connected’ arrays

For a periodic array of vortex rings, a new topology arises that cannot occur for an isolated
vortex. As ε increases from ε > εc1 , such as shown in figure 7(iii, iv), the width of the atmosphere
of each ring increases in the z-direction. At a new critical value of the thickness ratio, ε = εc2(λ),
the atmospheres of adjacent vortex rings touch at their midpoint along the z axis, as shown in
figure 7(v). In this special case, every fluid particle along the z axis is contained within in the
atmosphere of a vortex ring, and the point(s) labeled S′ at (z̃, r) = (λ/2 + jλ, 0)∀j ∈ Z is the only
stationary point in the co-moving frame. As ε further increases for ε > εc2(λ), the stationary point
in the (z̃, r) plane lifts from the central axis of symmetry to the point S at a position r = h′, as
illustrated in figure 7(vi). Similar to the ‘thin-bodied’ case, this stationary point corresponds to an
axisymmetric co-moving line of fluid particles. In contrast to the thin-bodied case, the atmospheres
of neighboring vortex rings touch, or are ‘connected’, at this point. The vortex ring atmosphere
is now bounded by heteroclinic orbits, that is, by the streamlines, or separatrices, that join the
stationary saddle point at S with a neighboring periodic image of that point.

Definition 3.1. A connected array of vortex rings is one in which the ‘atmospheres’ of successive
vortex rings are bounded by hetereoclinic orbits that are joined mid-way between the vortex rings at
a saddle point.

This second critical value, εc2 > εc1 , occurs when the speed of the vortex rings, U∞, is matched
by the axial velocity induced at the point (z, r) = (z0 + λ/2, 0) (and its periodic images), which can
be found by substituting z = λ/2 in (3.11), giving

u∞1/2(λ) ≡ uz(1/2, 0;λ) =

∞∑
n=−∞

4

(4 + (1− 2n)2λ2)3/2
. (3.14)

Solving U∞ (λ, εc2) = u∞1/2 (λ) by combining (1.3), (3.6), and (3.14) gives

εc2(λ) = 8 exp

(
−4π

(
u∞1/2(λ)− U∗∞(λ)

)
− 1

4

)
, (3.15)

which is shown in fig. 6.
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The bifurcation at ε = εc2(λ) also exhibits a scaling similar to that for a saddle-node bifurcation.
As ε→ ε−c2(λ), the points Q and R approach each other along the z axis with a horizontal spacing

that decreases asymptotically as d ∼ (εc2 − ε)1/2, as shown in figure 8. As ε→ ε+
c1(λ), the point S

approaches the centerline axis asymptotically as h′ ∼ (ε− εc2)1/2.
As with the transition from thin- to thick-bodied vortex ring arrays, the appearance of connected

vortex ring arrays depends on the periodic spacing λ. In the isolated-vortex limit λ→∞, we find
that εc2 → 8/e1/4, far above the ‘small’ values needed for our the ‘thin-cored’ assumption to hold;
practically, this means that for large λ, the bifurcation εc2 cannot be reached by thin-cored vortex
rings. This behavior is to be expected because the ‘midpoint’ of two vortex rings is infinitely far
away when λ→∞, and an isolated ring cannot carry all fluid particles along its axis because it
would need an infinitely large atmosphere to do so. In the opposite limit, λ→ 0, εc2 drops off
steeply, scaling at low λ in a manner identical to that of εc1 . Mathematically it can be seen that in
the limit of very closely spaced vortex ring arrays, the right hand sides of (3.13) and (3.15) approach
each other and become nearly identical. Physically, it should be expected that for closely-spaced
vortex rings, the threshold value of ε at which the atmospheres of neighboring vortex rings will
touch is very low. As a consequence, for λ < 1 vortex ring arrays make a very rapid transition from
‘thin-bodied’ to ‘connected’ with increasing ε, with ‘thick-bodied’ rings occurring for a vanishingly
small range ε ∈ (εc1 , εc2) for λ . 0.8.

For thin-cored vortex ring arrays, the speed of the fluid along the central axis of symmetry,
uz(z, 0;λ) (3.11), becomes larger and increasingly uniform as λ→ 0, as illustrated in fig. 5. Under
the thin-cored assumption, this speed is, to leading order, independent of the relative core thickness
ε� 1. On the other hand, the translating speed of the vortex ring array, U∞(ε, λ) (3.4), decreases
with increasing ε, as shown in fig. 4. For ‘connected’ vortex ring arrays, the value of ε is large
enough or, correspondingly, the value of λ is small enough that there exists a ‘tube’ of particles
around the z axis that are swept forward in the co-moving frame with an average speed that is
greater than that of the vortex ring.

It should be emphasized that the bifurcations being considered here are bifurcations in the
streamline topology, i.e. they are bifurcations of solutions to the ordinary differential equations (2.2),
not of the partial differential equations (2.1). Indeed, the two bifurcations that occur for axi-
symmetric, thin-cored vortex ring arrays are the simplest ones that can occur near the axis in an
axisymmetric flow [7]. Specifically, these two bifurcations correspond to the creation and destruction
of degenerate critical points in an axisymmetric flow for the 2nd order normal form when (2.2) are
expanded in a Taylor series about the origin [5]. Because this set of bifurcations is codimension-1
(i.e., they can be achieved by variation of a single parameter ε while keeping λ fixed), we expect
to see features from the normal form of order N = 2 and no higher. The same bifurcations in
streamline topology have been observed in numerical simulations of the flow inside a cylinder with
counter-rotating ends [6].

4. Conclusions

We have considered the motion due to a periodic array of identical, coaxial, axisymmetric,
infinitesimally thin circular vortex rings in an unbounded inviscid fluid as a function of two non-
dimensional parameters: λ, the ratio of their axial separation to their radii, and ε, their common
‘thickness ratio’. This system is, in a sense, the simplest problem involving the ‘interaction’ of
multiple vortex rings, where the radii, separation, and thickness of the rings — the variables that
generally characterize an N -vortex ring problem — all remain constant for all time. The interaction
dynamics of the vortex rings themselves are therefore quite simple, and have been known for more
than a century [20, 39]. However, the motion of the surrounding fluid in such a system, or indeed
for any system of interacting coaxial vortex rings, has received significantly less attention. The fact
that this problem can be viewed as steady in a uniformly-translating reference frame renders it
mathematically tractable and makes it useful for investigating how the separation and thickness of
vortex rings affect fluid transport in their vicinity.

As is known for a single vortex ring, each vortex in the periodic array carries with itself an
‘atmosphere’ of particles whose size and topology is modulated by ε. For ε < εc1 , the vortex rings
are ‘thin-bodied’. The bounding value εc1 is a strong function of the separation distance between
neighboring vortex rings, λ. For λ� 1, εc1(λ) ≈ εc as is expected, but εc1(λ) decreases rapidly
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with decreasing λ, with εc1(λ)� εc for λ = O(1). For εc1 < ε < εc2 , the vortex rings are ‘thick-
bodied’, with the range of ε over which these ‘thick-bodied’ rings are found decreasing rapidly
with decreasing λ. The new, higher critical value, εc2(λ), is the thickness ratio value at which the
mid-point along the central axis between neighboring vortex rings becomes a fixed point in the co-
moving frame of reference. These critical values, εc1 and εc2 , occur on two codimension-1 bifurcation
curves that meet asymptotically at (λ, ε) = (0, 0) and are the simplest possible bifurcations that
can occur in an axisymmetric system near the axis, as first observed in Ref. [6]. For ε > εc2(λ), the
streamline topology in the co-moving frame gives what we refer to as ‘connected’ vortex rings, for
which the atmospheres of two neighboring vortex rings meet at a circle of co-moving fluid particles
that is located mid-way between the two rings. For ‘thin-bodied’ rings, the rings travel faster than
the fluid near the central axis of symmetry; for ‘thick-bodied’ rings, fluid along a portion of the
central axis is contained within the atmosphere of each ring and thus moves with the rings; and for
‘connected’ rings the fluid near the central axis travels faster than the vortex rings. An interesting
feature of this system is that, for a fixed value of thickness ratio ε < εc, a periodic array of thin-
cored, axisymmetric vortex rings may be thin-bodied, thick-bodied, or connected, depending on
the value of the inter-vortex spacing, λ.

In practice, it is possible to find an approximation of a periodic array of axisymmetric vortex
rings using pulsed jets [18, 19] or observing the wakes of marine animals [13]. From the perspective
of vortex roll-up for a single ring [12], Linden & Turner have proposed an ‘optimum formation
length’ for the formation of vortex rings from a pulsed jet [21]. Our results suggest that, depending
upon the desired impact of the vortex rings on the surrounding fluid, one might also need to consider
the effect of the vortex spacing and core size on the topology of the vortex ring atmosphere; that is,
one might consider if the ‘optimum formation length’ leads to vortex rings that are ‘thin-bodied’,
‘thick-bodied’, or ‘connected’.
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