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Abstract We introduce a new definition of vortex formation length for uniform 
steady flow past a circular cylinder using Proper Orthogonal Decomposition (POD) 
of the pressure field. Previous definitions each identify a single characteristic length 
for a given value of Reynolds number. We use the leading modes of the pressure 
POD to define upper and lower bounds on the vortex formation length. Identifying 
a range for the vortex formation length is consistent with the hysteresis observed in 
the critical spacing of two tandem cylinders. 
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1 Introduction 

A key feature of bluff body wakes is the periodic formation of shed vortices. As 
suggested by Roshko [1] and illustrated in Fig. 1a, for a single fixed cylinder with 
diameter D in steady, uniform flow having free-stream speed U∞ and kinematic 
viscosity ν one can use the time-averaged flow field to identify the non-dimensional 
vortex formation length, lv = Lv/D, at which individual vortices have completed 
their formation and are released into the wake. The established definitions of lv [2] 
succeed in capturing time-averaged trends, such as the fact that vortices are released 
closer to the bluff body as Reynolds number, Re = U∞D/ν, is increased. However, 
these definitions do not make use of important temporal information in the flow 
field. Here we consider a new approach; for brevity and simplicity, we will focus
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Fig. 1 a Schematic of the vortex formation length, Lv = lvD, for a single fixed cylinder with 
diameter D. b The spacing, L = lD, of two tandem cylinders as defined here for comparison with 
Lv . c, d Examples of c the ‘wake-in-the-gap’ structure and d the ‘extended body’ structure in the 
flow past two tandem cylinders, reproduced from [4]; flow is from left to right. 

our attention on Re = 100, a commonly considered case exhibiting predominantly 
two-dimensional flow [3]. 

The flow quantity used to determine lv varies across the literature. For Re = 100, 
maximum pressure has given lv ≈ 1.4 [1], maximum fluctuating kinetic energy has 
given lv ≈ 2.8 when looking only along the centerline and lv ≈ 3.0 when consid-
ering the entire field [2], and maximum fluctuating streamwise velocity has given
lv ≈ 3.0 when looking only along the centerline and lv ≈ 2.2 when considering 
the entire field [2]. We will focus here on just the fluctuating pressure field. A study 
comparing these results with those for fluctuating streamwise velocity and kinetic 
energy across a range of Reynolds numbers will be the subject of a future manuscript. 

When two identical cylinders are aligned in tandem, as in Fig. 1b, the dimension-
less spacing, l = L/D, affects the flow structure and the fluid forces on the cylinders 
[5]. If l is large, the wake of the upstream cylinder resembles the classic ‘2S’ wake 
[3], as in Fig. 1c. For close spacing, as in Fig. 1d, there occurs an “extended body” 
flow structure. There is a critical spacing, lc, of two inline cylinders at which the flow 
transitions between the ‘wake-in-the-gap’ structure and the ‘extended body’ struc-
ture.1 The value of lc exhibits hysteresis when the system is varied quasi-statically by 
either increasing or decreasing the Reynolds number or the cylinder spacing [4]. At 
Re = 100, for example, it has been observed that the bounds on the critical spacing 
are lc,min ≈ 2.5 and lc,max ≈ 3.5 [4]. The hysteresis observed in the critical spacing 
of tandem cylinders suggests that there exists a range of spatial locations behind a 
single cylinder that is crucial to the development of the wake’s vortical structure. 

We propose a new definition of vortex formation length that produces a spatial 
range, not a single value, at a given Reynolds number. The methods used in our 
analysis are presented in Sect. 2, and in Sect. 3 we focus our vortex formation length 
analysis on Re = 100 using 2D computational simulations. We conclude in Sect. 4.

1 The standard definition of lc uses center-to-center distance, giving a value that is 0.5 larger than 
what is used here. The current definition allows for direct comparison with lv . 
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2 Methods 

Results were obtained by solving the 2D Navier–Stokes equation with the Lattice-
Boltzmann method using the BGK scheme [6] with the D2Q9 model and the single 
relaxation time approximation [7]. The 100D × 100D rectangular domain, with the 
cylinder(s) positioned in the center, was meshed using a multi-block grid refinement 
method [8]. The upstream boundary condition was uniform flow with speed U∞. The  
outlet boundary condition on the vector velocity u(x, t) was ∂u/∂t+U∞ ∂u/∂x = 0. 
The Neumann boundary condition ∂u/∂n = 0 was used on the sides of the domain, 
with n the outward-normal coordinate. On the cylinder boundary we specified 
u(x, t) = 0 using Bouzidi’s [9] method. Differences between our results and several 
previous works (e.g., [6]) for average drag coefficient, average lift coefficient, and 
Strouhal number for uniform flow past a single cylinder are within 5%. 

Our analysis is based on Proper Orthogonal Decomposition (POD) [10] of the fluc-
tuating scalar pressure field p'(x, t) = p(x, t)−p(x), where p(x) is the time-averaged 
pressure field. We applied this decomposition to p'(x, t) in the spatial window 
bounded by 0.5D ≤ x ≤ 12D and − 2D ≤ y ≤ 2D, where (x, y) = (0, 0) is at the 
cylinder’s center. We generated each data matrix Q = [

p'(x, t1) p'(x, t2) . . .  p'(x, tN )
]

using N = 1000 time snapshots spanning 10 periods of vortex shedding. The POD 
modes φn(x) are given by the eigenbasis of the matrix K = QQT , with modes ordered 
by level of decreasing contribution to the flow energy. The time-invariant modes φn(x) 
contain important information about the underlying structure of the time-varying 
pressure field, which is reconstructed from the modes by p'(x, t) = ∑N 

n=1 an(t) φn(x). 

3 A New Definition of Vortex Formation Length 

We present a new approach to defining the vortex formation length, based here on a 
POD analysis of the fluctuating pressure field. A similar approach can be applied to 
the fluctuating kinetic energy or streamwise velocity fields. 

The formation and release of a vortex is a strongly time-dependent process. Recon-
structing the flow field using only the first few POD modes can ‘filter out’ the effects 
of small-scale unsteadiness and help reveal important spatial structures. The forma-
tion of a vortex every half-period is one of the most significant and ‘high-energy’ 
events that occurs in the near-wake region, and thus the dominant POD modes should 
provide key information regarding the position(s) at which a vortex is formed in the 
wake. 

Figure 2e shows the energy associated with the first 10 modes in the pressure-
based POD representation of the flow past a circular cylinder at Re = 100. The  
first two modes contain 86% of the total energy, and modes 3 and 4 contain another 
13% of the energy. The spatial structure of each of the first four modes is shown in 
Fig. 2a–d.
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Fig. 2 a First, b second, c third, and d fourth POD modes of p'(x, t). Solid horizontal line in a is 
the line at y/D = 0.5 used to generate Cp curves in Fig. 3. Dashed lines in a, b show l0,i . e Energy 
for the first 10 modes of the fluctuating pressure field 

We determine a range of vortex formation length as follows. First, we select a 
representative line parallel to the wake centerline that intersects the relevant wake 
structure; the example y/D = 0.5 is shown in Fig. 2c. We then extract the non-
dimensional fluctuating pressure along this line, giving Cp = 2(p − p∞)/ρU 2∞ as a 
function of x/D for each of the modes, as in Fig. 3. Modes 1 and 2 show a global 
maximum in Cp for x/D < 3, with Cp settling into a decaying, nearly sinusoidal 
pattern for x/D < 5. For modes 3 and 4, this peak occurs near x/D ≈ 5. The end of 
vortex formation in a given mode is taken to be the first zero of Cp after the global 
maximum; we will refer to this (dimensionless) position as l0,i, where i identifies 
the POD mode. Conceptually, l0,i corresponds to the streamwise position beyond 
which mode i exhibits a decaying wake pattern, and we suggest that l0,i is the spatial 
location at which mode i stops contributing significantly to vortex formation. 

Since in this example most of the flow energy is contained within the first two 
POD modes, the structure contained within these two modes dominates the wake 
dynamics. We define the lower bound on the vortex formation length, lv,min, to be
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Fig. 3 Pressure coefficient along the line y/D = 0.5 as a function of streamwise distance from the 
center of the cylinder for a the first two modes and b the third and fourth modes of the pressure 
field. The solid circles indicate the locations of l0,i for each of the modes 
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the smaller value of l0,i (for i = 1, 2), which here occurs for mode 2, and we take 
the upper bound lv,max be the larger value of l0,i, here from mode 1. The dashed 
lines in Fig. 2a, b show the location of l0,i as a function of y/D; these values are 
only weakly dependent on y/D. Thus, for Re = 100 we define the vortex formation 
length behind a circular cylinder to be bounded by the values lv,min = l0,2 ≈ 2.5 
and lv,max = l0,1 ≈ 3.4. 

The POD modes 3 and 4 indicate that approximately 13% of the flow energy 
contributes to a wake structure that continues strengthening, in the sense of increasing 
peaks in the fluctuating pressure field, until x/D ≈ 5.5. The location at which these 
two low-energy modes show a transition from formation to dissipation is well beyond 
the expected value for the time-averaged vortex formation length [2] according to 
any of the existing definitions. This observation supports our assumption that here 
the two leading modes are the key modes for characterizing the vortex formation 
length. 

4 Conclusions 

Important information about the spatial extent of vortex formation behind a bluff body 
in cross flow is gained from considering only the time-averaged flow, but significant 
information is lost in the standard calculation of lv by neglecting the fluctuating 
field quantities. We have used Proper Orthogonal Decomposition (POD) to identify 
a range of vortex formation length based on critical points in the fluctuating pressure 
field. At Re = 100, we find 2.5 > lv > 3.4, a range of values that is consistent 
with many of the known time-averaged results for lv [2]. 

We stated in Sect. 1 that the hysteresis observed in the critical spacing between 
two tandem cylinders motivated considering a new definition for lv. At  Re = 100, 
observed bounds on the critical spacing are lc,min ≈ 2.5 and lc,max ≈ 3.5 [4]. A 
direct comparison of the bounds on lc with those we observed for lv suggests that 
our definition does provide important new information. In the case of two tandem 
cylinders, positioning the downstream cylinder with spacing lv,min > l > lv,max 
would cause interference with one of the two primary POD modes involved in the 
vortex formation process, while a spacing l > lv,min interferes with both modes. This 
perspective suggests that just one unimpeded mode is necessary to sustain an existing 
wake-in-the-gap flow, but both high-energy modes are necessary for initiating that 
flow structure. 

Our analysis here is limited in scope: it is specific to a 2D simulation of a circular 
cylinder at Re = 100, we have considered only a POD analysis of the flow, and we 
have based our definition on just the pressure field. Relevant applications occur at 
a wide range of Reynolds numbers, there are other flow decompositions that may 
be used, and most prior calculations of vortex formation length use the fluctuating 
velocity field [2]. The extension of our proposed approach in these directions is an 
open question. Given the fundamental nature of vortex wake formation, we anticipate
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that this overall approach—of using a flow decomposition to identify from a fluctu-
ating field quantity the critical bounds on vortex formation length—will be relevant 
to a wide variety of applications and open to numerous implementation approaches. 
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