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ABSTRACT

An inclined gravity-driven soap film channel was used to study the wake patterns formed behind
a transversely oscillating cylinder at Re = 235 ± 14. The natural frequency of vortex shedding
from a stationary cylinder, fSt, was used to identify the oscillation frequencies of interest. The
(dimensionless) frequency, f ∗ = f∕fSt, and amplitude, A∗ = A∕D, of the cylinder’s motion
was varied over a large portion of the fundamental synchronization region (i.e., for f ∗ ≈ 1), and
a ‘map’ of wake patterns was constructed in (f ∗, A∗) space. Lock-on between the frequency of
the cylinder’s motion and the dominant frequency of the resulting vortex wake was observed for
a large range of this parameter space, predominantly manifested as synchronized ‘2S’ and ‘2P’
wake modes. Synchronized ‘P+S’, ‘2T’, and ‘transitional’ wakes were also found in smaller
regions of parameter space. Unsynchronized ‘coalescing’ and ‘perturbed von Kármán’ wakes
were observed as the oscillation frequency became sufficiently different from fSt. The wake
patterns and vortex formation processes found in this study, particularly the 2Pmode wakes, bear
a strong resemblance to previous three-dimensional experimental results, despite the physical
constraint from the soap film that limits three-dimensional effects in the wake.

1. Introduction
Steady, uniform flow moving with speed U past a fixed circular cylinder with diameter D produces, for a wide

range of Reynolds numbers, an unsteady wake consisting of coherent vortical structures that are shed from the cylinder
with a clearly defined frequency, fSt; see, e.g., the review by Williamson (1996b) and the textbook by Zdravkovich
(1997). When the cylinder is also allowed to oscillate transverse to the flow direction in response to the periodic
vortex shedding — or, as is the case in the present work, when it is forced to oscillate at a prescribed frequency, f ,
and amplitude, A— the resulting wake structure can be significantly more complicated than when the cylinder is held
stationary (Williamson and Roshko, 1988). Equivalent flow behavior is observed when the cylinder is pulled through a
fluid at rest along a sinusoidal path with amplitudeA and wavelength � = U∕f , whereU is the constant cylinder speed
in the direction of the path’s centerline, as illustrated in Fig. 1; this approach is, in fact, the one used by Williamson
and Roshko (1988). In both cases, the velocity of the cylinder with respect to the background flow is given by

(u, v) = (−U, 2�fA cos(2�ft)) , (1)

where u and v are the streamwise and transverse velocity components, respectively. This classic problem is relevant
to a wide range of applications, including oil riser motion (Wu et al., 2012), aeroelastic stability (Zhang et al., 2017),
wind turbines (Heinz et al., 2016), and small-scale energy harvesting (Antoine et al., 2016), among others.

The oscillating cylinder problem can be characterized by the following three dimensionless groups: the Reynolds
number, Re = UD∕�, where � is the kinematic viscosity of the fluid; the normalized oscillation amplitudeA∗ = A∕D;
and the frequency ratio f ∗ = f∕fSt. The natural frequency of vortex shedding from a single stationary cylinder, fSt, is
often expressed in terms of the Strouhal number, St = fStD∕U , which is an empirically known function of the Reynolds
number (see, e.g., Williamson and Brown, 1998). In some studies, the wavelength ratio, �∗ = �∕D, or, equivalently,
the reduced velocity, U∗ = U∕(fD) = �∕D, is used instead of f ∗. Note that f ∗ = St∕U∗, so that for the wide range
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Figure 1: Circular cylinder oscillating (a) transversely relative to a background flow or (b) along a sinusoidal path through
a quiescent fluid.

of Re over which St is approximately constant the parameters U∗ and 1∕f ∗ can be used interchangeably; however, for
Re ≲ 1000, as considered here, the relationship between these parameters varies with the Reynolds number.

Two different methodologies have been used to investigate the flow-induced vibration of a circular cylinder sub-
merged in a steady, uniform fluid flow. In the free vibrations approach, one considers the response of an elastically-
mounted cylinder to the fluid forcing; see Williamson and Govardhan (2004) for a comprehensive review of these
‘Vortex-Induced Vibrations’ (VIV). The independent variable in these experiments is usually the reduced velocity U∗,
which relates the time scale of the cylinder’s oscillation, � = f−1, to the convective time scale, D∕U . A key result of
such studies is the maximum amplitude of motion experienced by the cylinder; in other words, free vibration studies
often aim to determine the maximum amplitude of flow-induced vibration for a given system and the value(s) of the
reduced velocity at which this maximum occurs. These parameters are of considerable practical importance.

The second approach to studying flow-induced vibrations, whichwas the one adopted for this study, is the controlled
oscillations approach (Bishop and Hassan, 1964; Williamson and Roshko, 1988). In this approach, the cylinder is
prescribed to move at particular values of frequency, f , and amplitude, A, for a specified inflow velocity, U . Studies
that use this approach are able to access as much of the frequency-amplitude parameter space as experimental (or
computational) considerations allow, rather than being constrained by the frequency and amplitude response of a given
system, which is typically not known in advance. By judiciously choosing the region of frequency-amplitude space
to explore (i.e., frequencies that one wishes to suppress or hopes to excite), these studies serve as a laboratory for
artificially-constructed ‘flow-induced’ vibrations. If the amplitude and frequency of a cylinder undergoing controlled
oscillation are made to mimic the response of the same cylinder under free vibrations (at a certain reduced velocity),
the two problems are commensurate, and one can provide insight into the other (Govardhan and Williamson, 2000;
Jiao and Wu, 2018). Thus, controlled oscillations allow one to create ‘what-if’ scenarios of practical importance that
may be difficult to test in the laboratory using free-vibration experiments.

Building on the seminal work of Bishop andHassan (1964),Williamson andRoshko (1988) conducted an extensive,
systematic study of flow past a circular cylinder undergoing controlled oscillations over a large range of f ∗ and A∗

values for 300 < Re < 1000. They found that different exotic vortex patterns appear in the cylinder wake for distinct
regions of the (f ∗, A∗) parameter space. In the fundamental synchronization region (i.e., for f ∗ ≈ 1), three main
patterns were identified: 2S wakes, with two (single) vortices shed per cycle of oscillation; P+S wakes, with a pair
of vortices and a single vortex shed per cycle; and 2P wakes, with two pairs of vortices shed per cycle of oscillation.
This general organization of the (f ∗, A∗) parameter space was confirmed with a highly-resolved study by Morse and
Williamson (2009) at Re = 4000, who identified an additional ‘2P overlap’ regime containing wakes with two pairs
of very different strength vortices (a ‘weak 2P’ mode) that appeared intermittently with the typical 2P wake. Leontini
et al. (2006) conducted a similar two-dimensional computational study for Re = {100, 200, 300} and found the primary
synchronization region to be populated only by 2S and P+S wakes. The results of the two studies by Williamson and
Roshko (1988) and Leontini et al. (2006) are summarized in figure 2(a,b).

One noticeable difference between the results in figure 2(a,b) is the presence of 2P mode wakes in the three-
dimensional experiments at higher Re values. By forcing the flow to be planar, Leontini et al. (2006) appeared to
completely suppress the occurrence of 2P wakes. Williamson and Roshko (1988) also noted that in their experiments
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Figure 2: Non-dimensionalized frequency-amplitude ‘map’ of wake patterns for a transversely oscillating cylinder from
previous studies: (a) patterns for a cylinder towed sinusoidally in a water tank at 300 < Re < 1000, with the wake
visualized using aluminum particles on the surface, from Williamson and Roshko (1988), and (b) patterns from a two-
dimensional computational simulation at Re = 300 using a body-fitted grid with an external force term to account for
cylinder’s transverse acceleration, from Leontini et al. (2006). (c) A weak 2P mode wake in two-dimensional flow at
Re = 300, from figure 21(c) in Dorogi and Baranyi (2020).

the symmetry-breaking P+S mode was observed to replace the symmetric 2P mode for Re < 300. It is generally
accepted that the 2P mode wake is absent in low Reynolds number and/or two-dimensional wakes (see, e.g., low-
Re experiments by Griffin and Ramberg (1974) and computations by Blackburn and Henderson (1999)). However,
Placzek et al. (2009) have described the appearance of a weak 2P mode for forced oscillations in a 2D computational
model at Re = 100, and Dorogi and Baranyi (2020) show a weak 2P mode occurring in a 2D computational model
at Re = 300 under both forced and free oscillations. An illustration of the structure observed by Dorogi and Baranyi
(2020) is shown in figure 2(c).

The forces experienced by isolated bodies undergoing flow-induced vibrations are largely caused by vortex shed-
ding at the rear of the body and the subsequent organization of the shed vorticity in the wake. Thus, changes observed
in the forces experienced by an immersed body have been attributed to changes in the presence, nature, intermittency,
and magnitude of vortex shedding. Abrupt changes in the magnitude of oscillations experienced by a freely-vibrating
cylinder while a controlling parameter is varied were first documented by Bishop and Hassan (1964). Williamson and
Roshko (1988) provided preliminary evidence that this ‘jump’ in forcing may be related to a change from the 2S to
the 2P mode of vortex shedding, a relationship that has been confirmed in free-vibration experiments with a flexibly-
mounted circular cylinder in a wind tunnel (Brika and Laneville, 1993) and in controlled-oscillation experiments with
a rigid cylinder in a water tunnel (Morse and Williamson, 2009). Thus, investigations of wake patterns, particularly
regarding the appearance (or absence) of the 2P mode, are relevant for understanding and predicting the fluid forces
on oscillating bluff bodies.

In this work, we extend previous studies by considering the wake patterns formed behind an oscillating cylinder
in an experimental system at Re ≈ 235 for the parameter ranges 0.2 < f ∗ < 1.8 and 0.1 < A∗ < 1.3. We restrict the
flow to be (quasi) two-dimensional by conducting the experiments in a gravity-driven soap film. Our approach can be
considered a complement to the 3D experimental work of Williamson and Roshko (1988) that facilitates comparison
with the 2D computational study of Leontini et al. (2006). The region of parameter space examined here overlaps
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much of that explored by Williamson and Roshko (1988) and includes the entirety of the region explored by Leontini
et al. (2006), as shown in figure 7.

Soap films have been used as a ‘laboratory’ for studying two-dimensional flows since their introduction by the
seminal work of Couder (Couder et al., 1984; Couder and Basdevant, 1986; Couder et al., 1989). The utility of soap
film systems was enhanced by the introduction of the flowing film ‘tunnel’ by Gharib and Derango (1989). Vertical,
gravity-driven soap films were first utilized by Kellay et al. (1995), and Georgiev and Vorobieff (2002) extended the
available parameter space by designing an inclined flowing film system. Auliel et al. (2015) have shown that the equa-
tions describing the motion of a flowing soap film are analogous to the two-dimensional incompressible Navier–Stokes
equations, provided that the Marangoni effect due to surface tension is small. A number of important hydrodynamics
results have been shown or replicated in soap films, including those by Yang et al. (2001), who showed that the stream-
lines produced by steady flow over a backward-facing step correlate well with numerical simulations; Vorobieff and
Ecke (1999), who found that the Strouhal-Reynolds number relationship for a stationary circular cylinder in a soap film
corresponds well to the two-dimensional St-Re relationship for a circular cylinder in a viscous fluid; Wu et al. (2004),
who determined that the time-varying angle of separation from a stationary circular cylinder agreed with results from
a spectral numerical method; and Yang and Stremler (2019), who established experimental values of critical spacing
between tandem cylinders and showed good agreement with two-dimensional simulations.

The remainder of the manuscript is organized as follows. In Section 2 we describe the soap film system and the
cylinder oscillation mechanism, explain the flow visualization and velocity measurement techniques, and detail the
method used to estimate the Reynolds number. Section 3 documents the results of our exploration of the parameter
space, arranged according to the type of wake pattern observed. In this soap film system and over the range of param-
eters covered by this study, documented wake patterns include ‘2S’, weak and strong ‘2P’, ‘P+S’, ‘2T’, ‘transitional’,
‘coalescing’, and ‘perturbed von Kármán’ types. Finally, section 4 sets out the main physical insights and conclusions
that can be drawn from this study regarding low-Reynolds number flows past transversely-oscillating circular cylinders.

2. Methods
The results presented in section 3 were obtained from experiments conducted in a flowing soap film channel that

was developed following the design introduced by Georgiev and Vorobieff (2002) and informed by the work of Jia and
Yin (2008) and Wang et al. (2010).

2.1. Soap film apparatus
Figure 3 shows a schematic of our inclined gravity-driven soap film system, which is identical to that used by

Yang and Stremler (2019). To generate a flowing film, soap solution consisting of 1% (by volume) Dawn Escapes dish
soap (Proctor & Gamble) mixed in water was first pumped to a top reservoir, consisting of an open plastic container
held inside a larger, open, overflow container; the solution was continually pumped from the overflow into the main
container to maintain a constant head in the reservoir throughout each experiment. A valve at the outlet of the reservoir
provided control of the volumetric flow rate. A soap film was developed between two nylon guide wires (with diameter
1mm) that were tensioned at the bottom of the system by a spring. The guide wires were separated using four horizontal
nylon pull lines (with diameter 0.3 mm) to form a 58 cm long triangular expansion section, a 10 cm wide by 1 m long
rectangular test section, and a 56 cm long triangular contraction section. The expansion section was inclined 57◦ from
the horizontal axis, the test section had a 14◦ inclination angle, and the contraction section had a 68◦ inclination angle.
The outline of the blue region in figure 3 shows the overall shape of the ‘channel’ to which the soap film was thus
confined. We were able to vary the flow speed in the inclined soap film over the range 0.5m/s ≲ U ≲ 1.2m/s. The
inclination angle of 14◦ in the test section was the minimum angle for which out-of-plane displacement of the film (by
gravity) was fully obscured by the nylon guide wires when viewed from the side. In this configuration the curvature
of the film surface was approximately 0.4 m−1, which we consider to be negligible.

An acrylic rod with diameterD = 6.35mm was mounted on a plate oriented parallel to the test section of the soap
film channel, so that the cylinder penetrated the soap film at a 90◦ angle. The cylinder was placed approximately 30 cm
from the entrance of the rectangular test section. Wakes were imaged as described in section 2.2. For the oscillation
experiments, cylinder motion was driven by a Scotch-yoke mechanism (see section 2.5).

The validity of using this soap film flow as an analog for the two-dimensional flow of a Newtonian fluid requires
that the elastic Mach number,Me ≡ U∕UM = O(10−1) (Auliel et al., 2015), where UM is the Marangoni wave speed
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Camera

Flow Cylinder

Low pressure Sodium lamps

Figure 3: A schematic of the experimental apparatus used for this study. The translucent blue area represents the
(approximately) 2-dimensional region occupied by the soap film, with the black arrows representing its gravity-driven flow.
Soap solution flows between a valve at the top of the frame and a bucket at the bottom (not shown). The sodium lamp is
positioned such that the interference fringe pattern reflected from the upper and lower surfaces of the soap film is captured
by the high-speed camera positioned between the lamp and the soap film. A scotch-yoke mechanism, to which an acrylic
cylinder is attached, is mounted inside the frame, but isolated from it using a vibration isolation table (not shown). The
free end of the cylinder protrudes through the soap film when the system is in operation.

given by
UM ≡

√

2EM∕(�ℎ).

The fluid density is �, ℎ is the (average) thickness of the soap film, andEM is theMarangoni elasticity. The average flow
speed for the experiments reported here was determined to be U ≈ 0.68m/s (see Section 2.3). By mass conservation,
this average flow speed corresponds to an average film thickness of ℎ ≈ 3�m. Kim and Mandre (2017) have shown
that for flowing soap film systems similar to the one used here, the Marangoni elasticity is EM ≈ 22mN/m, and we
have assumed this value in our estimate of UM . Taking � ≈ 1 g/cm3, the Marangoni wave speed for these experiments
is estimated to beUM ≈ 3.8m/s, which gives an elastic Mach number value ofMe ≈ 0.2. We thus haveMe = O(10−1)
for the experiments reported here, supporting the interpretation of these results as corresponding to those for a two-
dimensional Newtonian flow.
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Figure 4: (a) Flow visualization for the wake of a stationary circular cylinder (image size: 2352 × 600 pixels ≈ 39.2D× 10D).
A thin white rectangle (1 × 49 pixels) marks the region used in the quantitative analysis. (b) Time trace of the (unfiltered)
mean intensity of the rectangular region. (c) Power spectrum of the mean intensity, showing a primary peak at 18.67Hz.

2.2. Flow visualization and quantification
The wake patterns were documented by recording videos 8.2 seconds long at 170 frames per second for a total of

1400 frames per case, with each frame having an image resolution of 2352 × 600 pixels. During each recording, the
flow speedU , cylinder oscillation frequency f , and cylinder oscillation amplitudeAwere held fixed. Amonochromatic
light source positioned perpendicular to the experimental plane was used to illuminate the soap film, and the reflected
patterns of light were recorded with a high-speed camera positioned near the light source. Three low-pressure sodium
lamps (SOX 180, Philips; wavelength 590 nm), which were wired to each phase of an alternating current power source,
provided monochromatic illumination of the soap film. The phase delay between the lamps produced a nearly constant
light intensity; the small fluctuations in intensity had a frequency of 120Hz, as documented in Yang and Stremler
(2019). The camera (Falcon 4M60, Teledyne DALSA) recorded the interference fringe patterns produced by the light
source as it reflected off the top and the bottom surfaces of the soap film; the resultant changes in the scalar field of
light intensity were caused by variations in the thickness field of the soap film. Figure 4(a) shows a sample of the flow
visualizations obtained in our experiments.

The thickness variations enabling the flow visualization are produced by the flow physics, but these variations
are not expected to influence the interpretation of the flow as being two-dimensional and incompressible. Wu et al.
(2001) and Georgiev and Vorobieff (2002) have demonstrated that a flowing soap film without obstructions produces
an approximately uniform film thickness throughout the test section. Eshraghi et al. (2021) showed that thickness
variations in the wake of a fixed circular cylinder are less than approximately 25% of the average film thickness for
200 ≲ Re ≲ 300. These thickness variations in the wake introduce a Boussinesq-type behavior, but the flow time scale
is fast enough that buoyancy effects can be considered negligible (Auliel et al., 2015). Thus these thickness variations,
while crucial for the flow visualization, do not play a significant role in the physics of the flow, which can be assumed
to approximate that of an incompressible fluid (see Section 2.1).

The oscillation of the cylinder caused some time-dependent, spatially-varying, out-of-plane displacement of the
film. For sufficiently high amplitudes of oscillation frequency and amplitude, this deformation of the film prevented
reflected light from reaching the camera, leaving dark areas in the interferometry images (see Masroor et al. (2021)).
Using an end-on view of the film, we determined themaximum peak-to-peak out-of-plane displacement to be � ≈ 4mm
in the neighborhood of the cylinder for A∗ = 0.94 and 0.2 < f ∗ < 1.1. From these observations we estimated that the
out-of-plane displacement in this system had a negligible effect on the wake dynamics in the regions of interest.

Quantification of the wake frequencies was accomplished by examining the spatially-averaged, time-dependent
pixel intensity (with value 0 ≤ Ī ≤ 255) from a limited portion of the imaged flow. The interrogation window used
for quantifying the fixed cylinder wakes, for example, was the rectangular domain measuring 1 pixel wide (in the
streamwise direction) by 49 pixels high (in the transverse direction) shown as a white rectangle in figure 4(a). An
example time trace of Ī(t) is shown in figure 4(b). Variations in the wake that occurred on a time scale T > 1 s
corresponded to flow features with a length scale of l = UT ≳ 0.68m, which was approximately the distance from
the cylinder to the exit of the rectangular test section. We thus applied a low-pass filter to the Ī(t) data in every case to
exclude frequencies less than 1Hz. A Fast Fourier Transform (FFT) of the filtered Ī(t) data was then performed using
MATLAB (MathWorks) to determine the corresponding power spectrum, such as shown in figure 4(c). Every FFT in
this manuscript was applied to the low-pass-filtered Ī(t) data taken from a specific interrogation window using the full
experimental run, 0 ≤ t ≤ 8.2 s, for that case.

Yang, Masroor and Stremler: Preprint submitted to Elsevier Page 6 of 26



Wake of oscillating cylinder at low Re

16 18 20 22 24 26 28

0.9

0.8

0.7

0.6
U

(m
/s

)

(Hz)

Figure 5: Variation of vortex shedding frequency, fSt, with background flow speed, U , in the soap film system for a fixed
cylinder with diameter D = 6.35mm. Data is presented with U as the dependent variable for analysis purposes. Solid line
is the linear data fit given in (2).

2.3. Determining background flow speed
The undisturbed background flow speed of the soap film was measured directly using Particle Tracking Velocime-

try (PTV). For these measurements, the soap film solution was seeded during preparation with 10�m-diameter hollow
glass spheres, and these spheres were illuminated in the film with an Elinchrom modeling lamp (EL23006). Rep-
resentative particles were identified in successive video frames using the Image Processing Toolbox in MATLAB
(Mathworks). Flow speed was calculated as the average distance traveled by these particles per unit time.

We found that the seeding particles interfered with the interferometry flow visualization, making it impractical to
directly measure the flow speed when conducting the oscillation experiments. We thus correlated flow speed with the
vortex shedding frequency for a stationary cylinder with diameter D = 6.35mm in our specific study. Multiple trials
were conducted at various flow speeds in the range 0.55m/s < U < 0.90m/s, with videos of the wake patterns recorded
as described in section 2.2. The vortex shedding frequency, fSt, was identified here as the primary peak in the FFT
data, as described in section 2.2. This approach to determining fSt was validated through direct, manual calculations
of vortex shedding frequency in a few select cases. The resulting relationship between U and fSt observed for this
system is shown in figure 5 with U taken as the dependent variable, which can be represented by the linear fit

U = (0.02686m)fSt + (0.1508m/s) (2)

with correlation coefficientR2 = 0.9281. Although this relationship is expected to be a function of channel inclination
angle, channel aspect ratio, and soap solution composition, these parameters were held fixed for all of the experiments
used in this study, and thus this relationship was assumed to hold for all cases presented here.

For the oscillation experiments, the background flow speed was estimated by first determining the shedding fre-
quency with the cylinder held stationary and then using the relationship in (2). Flow speed was adjusted via the flow
control valve to obtain a (fixed cylinder) shedding frequency for each consecutive set of experimental runs in the range
18.8 < fSt < 21.0. Several successive video recordings were analyzed to determine a precise value of fSt for each
set of runs. The average shedding frequency for all experimental runs was fSt = 19.58Hz, which by equation (2)
corresponds to an average flow speed of U ≈ 0.68m/s.

2.4. Determining the Reynolds number
The standard approach to calculating Reynolds number requires an accurate value for the fluid viscosity. In a

flowing soap film, the viscosity value depends strongly on the thickness of the film; Trapeznikov (1957) has shown
that the viscosity of a soap film can be represented as � = �w + 2�s∕ℎ, where �w is the bulk viscosity of water, �s is
the viscosity of the surfactant-dominated free-surface layers, and ℎ is the thickness of the film (see also Vorobieff and
Ecke, 1999). For the very thin films generated in soap film experiments, the thickness is difficult to measure precisely
but plays an important role in determining viscosity.

Gharib and Derango (1989) were the first to suggest that the Reynolds number for the flow past a cylinder in a
flowing soap film could be estimated by observing the Strouhal number and then estimating the Reynolds number
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Figure 6: (a) Representative location of the circle identified with the Hough Transform superimposed on a cropped
frame from the video; fluid flow is from left to right. (b) Example time-trace of the vertical position of the cylinder,
superimposed on a sine curve with frequency 25.74 Hz. (c) Power spectrum of the example time-series data using a Fast
Fourier Transform, showing a clear peak at 25.74 Hz.

using the empirically-known relationship between Re and St. This indirect approach to determining the Reynolds
number for flow past a circular cylinder in a flowing soap film has since been used by several investigators; see, e.g.,
Vorobieff and Ecke (1999), Wen and Lin (2001), Jia et al. (2007), and Wang et al. (2010). We followed this approach
for estimating the Reynolds number in our system. We first used the observed vortex-shedding frequency, fSt, the
corresponding flow speed of the soap film U from (2), and the cylinder’s diameterD to calculate the Strouhal number,
St = fStD∕U . We then used the St-Re relationship from Williamson and Brown (1998),

St = 0.285 − 1.390
√

Re
+ 1.806

Re
, (3)

to determine the Reynolds number. The range of vortex-shedding frequencies observed in our experiments corresponds
to an average Reynolds number of Re = 235 ± 14.

2.5. Cylinder oscillation
As noted above, an acrylic rod with diameter D = 6.35mm was mounted on a plate oriented parallel to the test

section of the soap film channel, so that the cylinder penetrated the soap film at a 90◦ angle. For the oscillation
experiments, the plate was attached to the shaft of a motor via a Scotch-yoke mechanism that converted the circular
motion of the shaft to sinusoidal translation of the cylinder. The plate and motor were mounted to a vibration-isolation
table, and care was taken to ensure that the frame supporting the soap film did not come into contact with the motor
mount or the vibration-isolation table.

The cylinder’s oscillation frequency, f , was verified using image analysis of the recorded videos as described in
section 2.2. We extracted from each video frame a small spatial region (150 × 600 pixels) within which the motion of
the cylinder was contained, as shown in figure 6(a). A Hough transform was performed on this frame region to track
the position of the cylinder, giving a time trace of the cylinder such as illustrated by the solid circles in figure 6(b). We
then used a Fast Fourier Transform (FFT) on this time series to extract a power spectrum, which in every case had a
single well-defined peak at the oscillation frequency like that shown in figure 6(c).

The frequency-amplitude values used for the experiments reported here are shown in figure 7. The amplitude of the
cylinder’s oscillation was determined by the offset of the cylinder’s axis from the axis of the motor’s rotation, which for
a given Scotch yoke mechanism is fixed. Therefore, we varied the amplitude of oscillation by fabricating yokes with
different eccentricities, for a total of thirteen different amplitudes A ∈ {1.0mm, 1.5mm, 2.0mm, 2.5mm, 3.0mm,
3.5mm, 4.0mm, 4.5mm, 5.0mm, 5.5mm, 6.0mm, 7.0mm, 8.0mm}. The frequency of oscillation was varied along
a continuum for each amplitude by varying the amount of power provided to the motor from case to case. In these
experiments, the frequency of oscillation was kept in the range f < 40Hz to avoid the out-of-plane vibrations of the
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Figure 7: Comparison of the range of (f ∗, A∗) parameter space explored in this work and in previous studies. A total of
840 experiments were conducted; each dot represents a single experiment at a particular (non-dimensional) amplitude,
A∗, and oscillation frequency, f ∗. Note that f ∗ increases to the left, a convention used to facilitate comparison with
previous work. The range reproduced in figure 8 is indicated by a solid rectangle, the dashed rectangle shows the region of
parameter space explored by Leontini et al. (2006), and the dotted rectangle shows the (approximate) region of parameter
space covered by Williamson and Roshko (1988).

soap film that interfered with the interferometry when exciting at high frequencies, especially at large amplitudes. The
relationship between our experiments and the region of (f ∗, A∗) parameter space explored by previous studies is also
shown in figure 7. Note that the comparison with the parameter space studied by Williamson and Roshko (1988) is
only approximate, since they report results in terms of the reduced velocity U∗ = St∕f ∗ and the Strouhal number
varies with Reynolds number for this data.

The position of the cylinder in its motion can be characterized by a dimensionless time, t∗ = t∕� = tf . We chose to
define t∗ = 0 when the cylinder was located at the centerline of its motion and moving in the downstroke. Throughout
this manuscript we restrict −0.5 < t∗ < 2.0 and use this variable to represent the relative position of the cylinder in its
cycle.

2.6. A note on cylinder diameter
The cylinder was surrounded by a meniscus at the cross-section where it intersected with the soap film, and this

meniscus moved with the cylinder as it oscillated. Couder and Basdevant (1986) proposed calculating an effective
diameter of the cylinder in such a case by comparing the vortex shedding of the fixed cylinder with that of a thin fixed
disk aligned with the plane of the film. The resulting (larger) effective diameter is then used in place of the physical
diameter in all calculations.

We estimated an effective diameter for our system using the following procedure. We conducted fixed cylinder
wake experiments using a very thin circular disk made from clear polyester film (McMaster–Carr, USA) with diameter
D = 6.35mm and thickness �d = 25.4�m. The disk was held in the plane of the film by surface tension. Since the
disk thickness was close to the film thickness, the meniscus effect was assumed to be negligible. Using the St–Re
relationship from (3), the effective viscosity was estimated to be �eff = 20.1 ± 0.3mm2/s. The relationships between
U , fSt, St and Re then give a non-linear system of equations for the unknown effective diameter,Deff, which we solved
using an iterative process to find Deff ≈ 7mm.

Replacing the cylinder diameter, D = 6.35mm, in our calculations with the effective diameter, Deff = 7mm,
increases the estimated Reynolds number and decreases the dimensionless oscillation amplitude, A∗. This change
does not affect the interpretation of our results, except as it impacts direct comparisons with the results of others.
Since our experimental parameters are not an exact match with any other work, and since there is some subjectivity in
the interpretation of the effective diameter, particularly for a moving cylinder, we have chosen to report all results in
terms of the physical cylinder diameter, D.
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Figure 8: Wake-mode map delineating regimes of flow structure in the wake of a cylinder oscillating in a flowing soap film
at Re ≈ 235. Solid lines indicate boundaries between distinct regions of synchronization; dashed lines mark limits on data
collection; boundaries marked by hatched, dotted, and dashed-dotted lines are described in the text. Points labeled with
Roman numerals represent specific experiments referenced in the text. The filled square marks the location in parameter
space for the example considered in figure 13. Regions are labeled according to the dominant wake pattern as coalescing
(clsc), 2S, perturbed von Kármán (pvK), P+S, 2P (weak and strong), transitional (tr), and 2T. The inverted axis for f ∗

is used to match convention, as decreasing f ∗ corresponds to increasing reduced velocity, U ∗.

3. Results
Over a large portion of the parameter space explored in this study, coherent vortices formed in the wake of an os-

cillating cylinder in patterns that were observed to repeat periodically and synchronously with the cylinder motion. In
figure 8 we show the regions of parameter space where we observed the same vortex shedding patterns to occur consis-
tently. We follow the terminology of Williamson and Roshko (1988) and Williamson and Jauvtis (2004) by denoting
a single vortex with ‘S’, a pair of vortices with ‘P’, and a triplet of vortices with ‘T’. The frequency axis decreases
from left to right in accordance with the convention used in the literature for controlled-oscillation experiments and
simulations.

The boundaries shown in figure 8 do not mark abrupt changes in the wake structure. Rather, they denote the
approximate locations of “transition zones” over which the wake structure transitions from one type to another. We
speculate that this smooth shift in wake type is related to the topological bifurcation that occurs as the wake of a
stationary cylinder transitions from a time-periodic wake to the von Kármán vortex street (Heil et al., 2017).

The primary synchronization region — in the neighborhood of f ∗ ≈ 1—was found to be dominated by 2S wakes
at low amplitudes and 2P wakes at higher amplitudes. For the mid-range amplitudes in the regime identified as ‘(weak)
2P’, one vortex in each pair is considerably weaker than its partner. As described in section 3.2, the weak 2P mode is
not clearly distinct from the 2S mode, and the approximate boundary between these two regimes is shown as a hatched
region in figure 8. At the high frequencies and small amplitudes in the coalescing (clsc) region, multiple vortices are
shed from the cylinder per oscillation, and these vortices quickly merge to form a secondary street. At high frequencies
and large amplitudes (i.e., the empty upper-left portion of figure 8), out-of-plane vibrations in the soap film interfered
with visualization of the wake structure, so this region was excluded from our analysis. The edges of this region
are dictated by limitations in our experimental capabilities, not a known change in wake structure, so this region is
bounded by dashed lines. At low frequencies and small amplitudes, the 2S and (weak) 2P structures transition to what
we refer to as a ‘perturbed von Kármán’ (pvK) wake, in which the vortex formation is not locked on to the cylinder’s
motion; the pvK pattern does not appear to be discussed in the existing literature. Finally, for large amplitudes and
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Figure 9: Variation of normalized wake wavelength, �∗, with increasing normalized cylinder oscillation frequency, f ∗, for a
fixed value of oscillation amplitude, A∗, and Reynolds number. Open circles are from Griffin and Votaw (1972) at A∗ = 0.30
for Re = 144; dashed line is linear fit to this data. Closed circles are from the present study at A∗ = 0.315 and Re = 235,
corresponding to a horizontal slice through the 2S region in figure 8; solid line shows a linear fit to this data.

decreasing frequencies, the wake patterns consisted progressively of a transitional mode in which complex or unclear
wake structures were observed, a ‘2T’ mode with two triplets of vortices shed during each cycle of the cylinder’s
motion, and the pvK mode. More highly resolved data would be needed to resolve the tr-2T boundary more accurately,
and thus we show this approximate boundary as a dotted line. No data were collected below the dashed line atA∗ = 0.1.
The extension of the 2S region’s boundaries to (f ∗, A∗) = (1, 0) is based on the fact that a stationary cylinder will shed
vortices only at f = fSt and the assumption that in our system a small amplitude oscillation A∗ = O(�) will produce
vortex shedding with f ∗ ≈ 1. This extension is similar to that of Leontini et al. (2006); see figure 2(b). However,
this extension is purely speculative, and in a three-dimensional system a critical oscillation amplitude of A∗ ≳ 0.1
is needed to achieve ‘lock on’ (Koopmann, 1967). In the following sections, representative examples are discussed
from each region of (f ∗, A∗) space identified in figure 8. The experimental videos for each of the twenty examples
enumerated in figure 8 and discussed below are documented in Masroor et al. (2021).

At any given amplitude of oscillation, the wake wavelength was found to decrease with increasing oscillation
frequency. This dependence of wake wavelength on cylinder oscillation frequency is broadly consistent with the ob-
servations of Griffin and Votaw (1972), and a comparison for A∗ ≈ 0.3 is shown in figure 9. The good agreement that
is shown despite the differences in Reynolds number and experimental method supports the validity of using a flowing
soap film system for quantitative descriptions of two-dimensional wakes.

3.1. 2S mode
The low-amplitude region of parameter space at oscillation frequencies close to the natural frequency of vortex

shedding was found to be populated by synchronized 2S wakes, in which two vortices of equal and oppositely-signed
strengths are formed from the vorticity shed during each half-cycle of cylinder motion. The clockwise vortex is shed
during the cylinder’s upstroke (for left-to-right flow), and the counter-clockwise vortex is formed from vorticity shed
during the downstroke. Three example cases, for the parameter values labeled I–III in figure 8, are shown in figure 10.
Synchronized 2S wakes such as these have been widely reported to be observed in the vicinity of the low-amplitude
primary resonance in studies of both controlled (Williamson and Roshko, 1988; Govardhan and Williamson, 2000;
Leontini et al., 2006) and free oscillations (Khalak and Williamson, 1999). Typically, the power spectra from these
wakes are strongest at the oscillation frequency despite the low amplitude of oscillation, which suggests that these
wakes are strongly locked-on to the cylinder oscillation. These power spectra, such as shown in figure 10(c), were
determined for our examples by taking an FFT of the average image intensity in a 1 × 150 pixel rectangle located a
distance 7.2D downstream of the cylinder (see figure 10(b)); thus, the cylinder oscillation frequency can appear in the
power spectra only through its influence on the cylinder wake.
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Figure 10: Representative cases of 2S vortex wakes. Rows are labeled according to case with parameters I: (f ∗, A∗) ≈
(0.90, 1.16) at t∗ = 0.578, II: (f ∗, A∗) ≈ (0.95, 0.32) at t∗ = 0.728, and III: (f ∗, A∗) ≈ (0.70, 0.39) at t∗ = 0.366; cases are also
identified with the same labels in figure 8. Columns show (a) the near- and mid-wake regions (image size: 600 × 300 pixels
≈ 10D× 5D), (b) the extended wake region (image size: 2053 × 600 pixels ≈ 34.2D× 10D), and (c) the normalized power
spectrum for each case, with the frequency corresponding to cylinder oscillation identified. White rectangles in column (b)
show interrogation window (1 × 150 pixels) used to calculate power spectrum. Contrast has been enhanced in wake images
to improve clarity.

The synchronized 2Smode of vortex shedding in the wake of an oscillating cylinder is physically quite distinct from
what is known as the von Kármán mode of vortex shedding in the wake of a fixed cylinder. Although the resulting
flow looks quite similar (compare figure 10(b) with figure 4), the 2S mode occurs due to an interplay between the
motion of the cylinder and the motion of the fluid, with the cylinder’s motion causing the shear layers from each side
of the cylinder to roll up into exactly two counter-rotating eddies during each period of the cylinder’s motion. In the
von Kármán wake, there is no motion of the cylinder, and the shear layers independently arrange themselves into a
series of counter-rotating eddies at the Strouhal frequency. In other words, the fixed-cylinder vortex wake formation
is a ‘shear layer instability’ phenomenon (Heil et al., 2017), while the 2S wake of an oscillating cylinder relies also on
a ‘resonance’ phenomenon.

Some variation in the detailed structure of the near wake was observed within the region labeled 2S. When f ∗ ≈ 1
and A∗ was low (see, for example, case I in figure 10), the clockwise and counterclockwise shear layers from the top
and bottom of the cylinder rolled up discretely into single vortices of opposite sense, resulting in a ‘clean’ structure in
the far wake that strongly resembles the von Kármán street. Increasing the amplitude (e.g., case II) and also reducing
the oscillation frequency (e.g., case III) resulted in each shear layer splitting into a weak and a strong vortex of opposite
sense, giving two oppositely-signed pairs of vortices in the near wake for each period of oscillation. However, in the
2S region of figure 8, this appearance of a weak 2P structure immediately after the cylinder was short-lived, and within
two periods of motion the wake assumed a clear 2S structure. This near-wake behavior appears to be consistent with
that shown in corresponding 2D computational results (Leontini et al., 2006, figure 7), in which each newly-shed vortex
had a weak ‘tail’ that was not counted when classifying the wake. In section 3.2 we show that a modified form of this
same process was responsible for the formation of 2P wakes.

3.2. 2P mode
The largest portion of the primary synchronization region was found to exhibit the 2P mode of vortex shedding, in

which two pairs of oppositely-signed vortices were shed per oscillation cycle. This wake mode was observed primarily

Yang, Masroor and Stremler: Preprint submitted to Elsevier Page 12 of 26



Wake of oscillating cylinder at low Re

IV

V

VI

(a) (b) (c)

oscillation

oscillation

oscillation
0.8
0.6
0.4

0.2
0

1.0

0 20 40 60 80

0.8
0.6
0.4

0.2
0

1.0

0 20 40 60 80

0.8
0.6
0.4

0.2
0

1.0

0 20 40 60 80

Frequency (Hz)

Figure 11: Representative cases of weak 2P vortex wakes. Rows are labeled according to case with parameters IV:
(f ∗, A∗) ≈ (0.57, 0.47) at t∗ = 0.852, V: (f ∗, A∗) ≈ (0.65, 0.79) at t∗ = 0.366, and VI: (f ∗, A∗) ≈ (0.72, 0.55) at t∗ = 0.339;
cases are identified with the same labels in figure 8. Columns show (a) the near- and mid-wake regions (image size: 600
× 300 pixels ≈ 10D× 5D), (b) the extended wake region (image size: 2053 × 600 pixels ≈ 34.2D× 10D) with interrogation
window shown in white, and (c) the normalized power spectrum for each case. Contrast has been enhanced in the wake
images to improve clarity.

in the high-amplitude range (0.4 < A∗ < 1.3) of the primary synchronization region (f ∗ ≈ 1), which is similar to the
results reported byWilliamson and Roshko (1988) for 300 < Re < 1000. In contrast, Leontini et al. (2006) did not find
any 2P wakes in their two-dimensional computations. Two main types of 2P wake were identified in our experiments:
a ‘weak 2P’ mode and a ‘strong 2P’ mode that are distinguished primarily by the structure and relative strength of the
pairs in the mid- and far- wake. A similar weak 2P mode has been identified in other studies (see, e.g., the 2Po mode
in figure 4 of Morse and Williamson, 2009) when spatially-resolved data in the near wake have been available.

3.2.1. Weak 2P mode
A ‘weak 2P’ mode was observed in the low-frequency, mid-amplitude region of the parameter space, as shown in

figure 8. Three examples of these weak 2P wakes are shown in figure 11. Four coherent vortex structures are shed
during each cylinder oscillation cycle. The weaker, secondary vortices survive the roll-up process to a greater extent
than in the 2S region, leading to a mid- and far-wake structure that differs from the von Kármán street. Each secondary
vortex, although shed as its own coherent structure, is significantly strained by the stronger neighboring vortices as it
moves to a location mid-way between these successive strong vortices.

As described at the beginning of section 3, changes between regimes occur continuously over a (narrow) range of
parameter space rather than abruptly at a distinct point. For the transition between the 2S and weak 2P modes, this
change occurs over a broader range of parameter space than for the other transitions. A certain subjectivity in the
distinction between the 2S mode and the low-amplitude weak 2P mode, therefore, is unavoidable, and we have denoted
our estimate of the boundary between these two regions by a hatched region in figure 8.

The weak 2P region shows a significant degree of variation in the wake details across the corresponding region of
parameter space. The far-wake structure for case IV—which is close to the boundary with the 2S region— is not very
different from that of case III (see figure 10). At higher amplitudes and lower frequencies, placing the system farther
away from the 2S region of parameter space, a more distinct ‘weak 2P’ structure emerges in the far wake, with the
weaker member of the pair persisting for longer convective times (compare cases V and VI with case IV). However,
in all parts of the weak 2P region the weaker vortex does eventually distort into a braid shear layer between successive
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Figure 12: Representative cases of strong 2P vortex wakes. Rows are labeled according to case with parameters VII:
(f ∗, A∗) ≈ (0.98, 0.63) at t∗ = 0.048, VIII: (f ∗, A∗) ≈ (1.26, 0.79) at t∗ = 0.967, and IX: (f ∗, A∗) ≈ (0.87, 1.10) at t∗ = 0.179;
cases are also identified with the same labels in figure 8. Columns show (a) the near- and mid-wake regions (image size:
600 × 300 pixels ≈ 10D × 5D), (b) the extended wake region (image size: 2053 × 600 pixels ≈ 34.2D × 10D), and (c) the
normalized power spectrum for each case. Contrast has been enhanced in the wake images to improve clarity.

strong vortices, with the process happening further downstream with greater distance (in parameter space) from the
2S region. The fact that this persistence of the weak vortices increases with decreasing frequency suggests that the
transition from 2S to weak 2P wakes is a result of the slower transverse motion of the cylinder, which produces a
greater distance between successive strong vortices and reduces their inductive effect on the weak vortices.

3.2.2. Strong 2P mode
The second type of 2P wake — which we refer to as the ‘strong 2P’ mode — occurs at higher amplitudes and

oscillation frequencies relative to the weak 2P mode, as shown in figure 8. We identify this mode as distinct from
the weak 2P mode because the wake structure in this strong mode consists clearly of vortex pairs well into the far
wake region, as shown in figure 12 for three representative examples. The vortices in each pair were of noticeably
unequal strength throughout the entire parameter space, even in this strong 2P region. However, in the strong 2P mode
the strength of the weaker vortex and its distance from the paired stronger vortex remain large enough to prevent the
weaker vortex from being strained into a braid shear layer in the mid-wake region.

The relative motion of vortices in each of cases VII and IX is reminiscent of the ‘orbiting’ and ‘exchanging’ modes
identified by Basu and Stremler (2015) in the motion of two pairs of point vortices with glide-reflective symmetry in
a periodic strip. Due to the near-periodicity of the 2P wake (in most cases), the relative vortex positions in successive
downstream pairs can be interpreted as representing the stroboscopic time evolution of a single pair. In case VII, the
weaker vortex of each pair orbits the stronger vortex for less than one full revolution when it appears to exchange
partners with the strong vortex in the neighboring (downstream) pair just as it leaves the frame, giving rise to relative
vortex motion in an ‘exchanging’ mode. In case IX, the weaker vortex orbits the stronger vortex and remains in close
proximity to its original partner throughout the visible wake, showing behavior in an ‘orbiting’ mode. This progression
from an exchanging mode to an orbiting mode for increasing A∗ with f ∗ ≈ 1 is consistent with the relative vortex
strengths in each pair becoming more similar as the oscillation amplitude is increased.
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Figure 13: Vortex formation process for the strong 2P mode wake with (f ∗, A∗) ≈ (0.92, 0.55); corresponding point in
parameter space is marked by a solid square in figure 8. Top panel: Cylinder positions in time (solid circles) corresponding
to the panel images; solid line shows a sine curve fit to all observed positions over the full 8.2-second run, not just the points
shown here. Numbered panels: flow structure for t∗i = {−0.107, 0.007, 0.120, 0.234, 0.348, 0.462, 0.576, 0.689, 0.803, 0.917},
with i given by the panel label. Each wake image measures 599 × 398 pixels ≈ 10D × 6.6D). Cylinder cross-section in
contact with the soap film has been marked by a filled circle. Images have been processed to highlight flow structure.
Vortex labels are discussed in the text. Vortex D1 is obscured from view in the fifth frame due to the parallax effect and
thus is not labeled there. Compare with figure 11 in Williamson and Roshko (1988).

3.2.3. 2P wake formation
In order to better understand the process of vortex shedding in the strong 2P mode, which dominated the primary

synchronization region in our experiments, nine successive video frames of the cylinder and its near wake were ana-
lyzed for an oscillation amplitude A = 3.5mm (A∗ = 0.55) and frequency f = 19.34Hz. For this case, fSt = 21.0,
giving f ∗ = 0.92. The point (f ∗, A∗) = (0.92, 0.55) is marked by a filled square in figure 8. Additional processing
to highlight the flow structure gives the images shown in figure 13, which the reader is encouraged to compare with
figure 11 of Williamson and Roshko (1988).

The nine frames capture approximately one full cycle of the cylinder’s motion, comprising one period of the sine
curve traced by the cylinder in a frame moving with the free stream, as illustrated in figure 13 (top panel). Due to a
parallax effect, the top of the cylinder, which appears clearly in the images, does not coincide with the location at which
the circular cross-section intersects the soap film; a solid circle has been added in each frame to mark this location. The
periodic nature of vortex shedding can be verified by the similarity between frames 1 and 9, which are at approximately
the same phase of the cyclic motion. Each vortex is identified by an alphanumeric label, with syntax chosen to mirror
that in Williamson and Roshko (1988).

Figure 13 shows the cylinder starting near the beginning of its downstroke. Vortex B2 has already been formed,
while vortex C1 is observed shedding and forming over the first two frames as the cylinder moves downward. Then,
under the influence of its stronger neighboring vortex B2, vortex C1 is rapidly pulled away from the cylinder between
the second and third frames. Thus paired together, these two vortices subsequently convect away from the cylinder

Yang, Masroor and Stremler: Preprint submitted to Elsevier Page 15 of 26



Wake of oscillating cylinder at low Re

without much relative motion.
The shedding and convecting away of the counterclockwise vortex C1 relatively early in the cylinder downstroke

allows enough time for another counterclockwise region of vorticity to develop on the cylinder’s edge during the
remainder of the downstroke; the beginnings of this development can be seen at time t∗3. This new vortex, labeled C2,
is then shed from the cylinder not due to the induction of a neighboring vortex (as was C1) but due to the ‘jerk’ of
the cylinder during the turning point in its sinusoidal motion, which occurs between the fourth and fifth frames. In
later frames, it can be seen that C2 is a much stronger counterclockwise vortex than C1, and these two vortices remain
connected to each other via a braid shear layer with like-signed vorticity owing to them being shed during the same
downstroke.

During the cylinder’s upstroke, clockwise vorticity is shed. The incipient clockwise vorticity (labeled D1) can
already be seen developing in the third frame as the cylinder’s downward motion slows, but D1 remains attached to
the cylinder until the fifth frame. Vortex D1 is shed at some point between the fifth and sixth frames. This vortex
is relatively weak and appears to have been ‘prematurely’ pulled away from the cylinder under the influence of its
larger counterclockwise neighbor C2. Then, in the remainder of the cylinder’s upstroke, clockwise vorticity continues
to develop along its top edge and remains connected to D1 via a braid shear layer. Once again, the stronger vortex
D2 is shed not under the influence of a neighboring vortex, but due to the ‘jerk’ of the cylinder, now in the opposite
direction. This cylinder motion results in D2 being a relatively strong counterclockwise vortex, analogous to the
clockwise vortex B2. As the cylinder executes its downward stroke, D2 is once again positioned to draw away the
counterclockwise vorticity, which can be seen developing in the ninth frame, labeled E1, exactly analogous to C1 in
the first frame.

These observations show that counterclockwise vorticity is mostly generated during the downstroke, while clock-
wise vorticity is mostly generated during the upstroke. At each turning point, the ‘jerk’ causes a strong vortex to be
shed, which goes on to become the larger vortex in each pair comprising the 2P vortex street. A corresponding smaller
vortex is shed during roughly the first half of each stroke, and this weak vortex rapidly convects away from the cylinder
under the influence of the stronger neighbor shed just previously.

3.3. P+S mode
A ‘P+S’ mode, in which three vortices are shed per oscillation cycle, was observed at high oscillation frequencies

and moderately high amplitudes of oscillation. Two representative examples of P+S wakes are shown in figure 14.
The vortices that formed in the P+Smode were observed to be quite sensitive to perturbations and would often become
significantly distorted in the mid- to far- wake; see, e.g., case XI in figure 14. The near-wake regions show that the
pair of vortices shed from one side of the cylinder often had ‘stray’ concentrations of vorticity manifested as “cat’s
eye” shear layers or even small individual vortices. This additional vorticity tended to have a noticeable effect on wake
periodicity and stability, as illustrated by the presence of multiple incommensurate peaks in the power spectrum for
case XI in figure 14(c). In general, the P+S wakes observed in these experiments were not as regular as the 2P wakes
and, in contrast to the 2S and 2P mode wakes, the power spectrum for case XI is not dominated by the oscillation
frequency.

The P+S wake formation process for case X is illustrated in figure 15 over one period of cylinder motion. The
similarities between frames 1 and 8 clearly shows the (near) periodicity of the shedding process in this case and
allows one to view frame 1 as a continuation of frame 7. For the sequence shown here, the first coherent vortex,
with counterclockwise rotation, appears to have formed between times t∗2 and t

∗
3, either during the turning point of the

downstroke or early in the upstroke. A weak clockwise vortex was shed very quickly thereafter, between t∗3 and t
∗
4. A

second, much stronger clockwise vortex began forming during the second half of the upstroke and was shed around t∗5
at the turning point of the upstroke. These two vortices merged into one clockwise vortex within one period, as can be
seen in the progression from t∗7 to t

∗
8 or t

∗
1 (by making use of the periodicity of the shedding process), and then to t∗2.

The final counterclockwise vortex (of the period) was shed during the first half of the downstroke (see frames 6–7);
the proximity of this vortex to the strong clockwise vortex led to these two vortices moving into the wake as a pair.

As figure 8 shows, the P+S region of the parameter spacemanifested itself in our experiments as a narrow horizontal
band in the high-frequency, mid-amplitude range of the (f ∗, A∗) plane. This range of parameter space corresponds
roughly to a portion of the coalescing P+S mode in Williamson and Roshko (1988) and a portion of the unlabeled
region in Leontini et al. (2006). The irregular behavior of the P+S mode in our system thus bears some resemblance
to prior results.

We speculate that the P+S wake region of parameter space for an oscillating cylinder in a soap film extends into the
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Figure 14: Representative cases of P+S vortex wakes. Rows are labeled according to case with parameters X: (f ∗, A∗) ≈
(1.28, 0.55) at t∗ = 0.862 and XI: (f ∗, A∗) ≈ (1.53, 0.63) at t∗ = 0.180; cases are identified with the same labels in figure 8.
Columns show (a) the near- and mid-wake regions (image size: 600 × 300 pixels ≈ 10D × 5D), (b) the extended wake
region (image size: 2053 × 600 pixels ≈ 34.2D × 10D), and (c) the normalized power spectrum for each case. Contrast
has been enhanced in the wake images to improve clarity.
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Figure 15: Vortex formation process in the ‘P+S’ mode for case X in figure 14. Top panel: Cylinder positions in time (solid
circles) corresponding to the panel images; solid line shows a sine curve fit to the entire 8.2-second observed trajectory.
Numbered panels: flow structure for t∗i = {0.107, 0.265, 0.423, 0.580, 0.738, 0.896, 1.054, 1.211}, with i given by the panel
label. Each wake image measures 599 × 398 pixels ≈ 10D × 6.6D). Cylinder cross-section in contact with the soap film
has been marked by a filled circle. Images have been processed to highlight flow structure.

high-frequency, high-amplitude region of the (f ∗, A∗) plane that wewere not able to explore. If this region of parameter
space does indeed consist of P+S mode wakes, it would increase the similarities between our results and those of
Williamson and Roshko (1988) and Leontini et al. (2006). It should be possible tomodify the inclined soap film channel
to access this region of parameter space. However, in the interest of keeping as many experimental variables constant
as possible (e.g., angle of inclination, soap solution composition, diameter of the cylinder, approximate average speed
of the soap solution, length and width of the test section) across as much of the (f ∗, A∗) space as possible, we have
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Figure 16: Representative cases of 2T vortex wakes. Rows are labeled according to case with parameters XII: (f ∗, A∗) ≈
(0.39, 0.79) at t∗ = 0.965 and XIII: (f ∗, A∗) ≈ (0.41, 1.10) at t∗ = 0.192; cases are identified with the same labels in figure 8.
Columns show (a) the near- and mid-wake regions (image size: 600 × 300 pixels ≈ 10D × 5D), (b) the extended wake
region (image size: 2053 × 600 pixels ≈ 34.2D × 10D), and (c) the normalized power spectrum for each case. Contrast
has been enhanced in the wake images to improve clarity.

not pursued such modifications in this work.

3.4. 2T mode
Another synchronized pattern of vortex-shedding was observed for the region of parameter space labeled ‘2T’ in

figure 8, in which six vortices were shed during each cycle of the cylinder’s oscillation. As shown for two examples
in figure 16, these six vortices organized into two groups of three vortices each. As the vortices moved into the far
wake region their structure became noticeably distorted, yet they still maintained a clear ‘2T’ pattern consisting of two
sets of vortex triplets. The dominant frequency in the power spectra, shown in figure 16(c), was again the oscillation
frequency of the cylinder, showing a wake structure that was synchronized with the cylinder motion.

Panels numbered 1–12 in figure 17 show the formation of vortices during one half-cycle of the cylinder’s motion
for case XIII, comprising 7 frames of the upstroke and 5 frames of the downstroke. In the first frame, the triplet formed
in the previous half-cycle can be seen, and in frames 2–4 this triplet moves downstream away from the cylinder while
the counter-clockwise vortex labeled A develops on the lower surface. As the cylinder decelerates to a complete stop
and turns around in frames 5 through 8, A remains attached while a clockwise vortex, labeled B, rolls up on the upper
surface of the cylinder and progressively strengthens. By frame 8, when the cylinder has begun the downstroke, B
has become strong enough to distort A, which in frame 9 has been pinched off into a weak counter-clockwise vortex
labeled A1 that rapidly ejects away from the cylinder. As the cylinder accelerates downward, B slowly detaches from
the cylinder while the attached remainder ofA rolls up into another counter-clockwise vortex, labeledA2. By frame 12,
the triplet comprised of {A1, B, A2} can be clearly seen.

Panels labeled 13–16 in figure 17 were selected from the remaining half-cycle of the cylinder’s motion to show the
glide-reflective symmetry of this mode. Frame 13 is approximately a ‘mirror image’ of frame 3, frame 14 of frame 6,
and frame 15 of frame 8; frame 16 is nearly identical to frame 1. The vortices in frame 13–15 have been labeled with
a prime to indicate that they are analogous to the previously-seen vortices (albeit with opposite sign). For example,
between frames 14 and 15, clockwise vortexA′ begins to stretch and split into two, similar to the way counterclockwise
vortex A stretches and splits into two between frames 6 and 8.

This vortex formation process for the 2T wakes appears to be quite regular, and it is our observation that the
irregularity of the far wake in the 2T region— compare, e.g., figure 16 with figure 12—was caused not by aperiodicity
in the vortex shedding but by sensitivity of the subsequent vortex arrangements to disturbances in the flow.

This type of high-amplitude synchronized mode, in which a triplet of vortices forms from the vorticity shed during
each half-cycle of cylinder motion, was first observed in experiments with a circular cylinder that was flexibly mounted
and allowed to oscillate in both the streamwise and transverse directions (Williamson and Jauvtis, 2004). The same
mode of vortex-shedding has been observed in three-dimensional computations of the flow over a cylinder undergoing
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Figure 17: Vortex formation process during one cycle of cylinder motion for the 2T wake case XIII from
figure 16. Top panel: Cylinder positions in time (solid circles) corresponding to the wake images; solid line
shows a sine curve fit to the entire 8.2-second observed trajectory. Numbered panels: flow structure for t∗i =
{0.477, 0.522, 0.568, 0.613, 0.659, 0.704, 0.749, 0.795, 0.840, 0.885, 0.931, 0.977, 1.067, 1.204, 1.294, 1.476}, with i given by the
panel label. Frames i = 1, ..., 12 show successive images corresponding to a half-cycle. Frames i = 13, ..., 16 were selected
from the second half-cycle to highlight the symmetry of this mode: compare panel 3 with 13, 6 with 14, 8 with 15, and
1 with 12 and 16. Each wake image measures 500 × 400 pixels ≈ 8.25D × 6.6D). Cylinder cross-section in contact with
the soap film has been marked by a filled circle. Images have been processed to highlight flow structure.

controlled ‘figure-8’ motion oscillations including both streamwise and transverse oscillation (Huang and Larsen,
2010). Our results show that in-line movement of the cylinder is not necessary for the appearance of the 2T mode, at
least for this soap film system. Leontini et al. (2006) did not include in their study the region of parameter space for
which we observed the 2T mode (f ∗ < 0.5); it is possible that the 2T mode would be found in low-Reynolds number
two-dimensional Navier-Stokes computations for f ≈ fSt∕3.

3.5. Transitional (tr) mode
A portion of the primary synchronization region is marked ‘transitional’ in figure 8, representing a transition from

the synchronized 2T mode to the synchronized 2P mode as the oscillation frequency was increased. This transition
regime consisted of synchronous vortex shedding with complex and often asynchronous wake structure. Two examples
of transitional wakes are shown in figure 18. The power spectra in the transitional regime continued to be dominated
by the cylinder oscillation frequency, leading us to classify these wakes as ‘synchronized’ despite the typical lack of
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Figure 18: Representative cases of transitional (tr) vortex wakes. Rows are labeled according to case with parameters
XIV: (f ∗, A∗) ≈ (0.64, 1.26) at t∗ = 0.264 and XV: (f ∗, A∗) ≈ (0.60, 0.94) at t∗ = 0.709; cases are identified with the same
labels in figure 8. Columns show (a) the near- and mid-wake regions (image size: 600 × 300 pixels ≈ 10D × 5D), (b) the
extended wake region (image size: 2053 × 600 pixels ≈ 34.2D × 10D), and (c) the normalized power spectrum for each
case. Contrast has been enhanced in the wake images to improve clarity.

coherence in the resulting wake structure.
In some cases, intermittent loss of lock-on was observed during the course of a single (8.2-seconds-long) exper-

iment: for short periods of time, vortex shedding would occur clearly synchronized with the cylinder’s motion, but
this lock-on would be lost after irregular periods, leading to an overall incoherent wake structure. Case XV in figure
18 is an example of such a result: the near wake contains a clear vortex pair shed in the most recent cycle, but in
the mid-wake there are several haphazardly-arranged vortices from the previous few cycles. This example shows that,
although vortex shedding did occur in correlation with the cylinder’s motion, it was not necessarily periodic, with
different numbers of vortices being shed during various cycles of the cylinder’s motion.

In other cases, we observed what appear to be other modes of synchronization, such as periodic vortex shedding
that does not fit the descriptions of modes 2S, P+S, 2P or 2T; see, e.g., case XIV in figure 18. However, these modes
were either temporally short-lived — i.e., consistent wake structure was not sustained for an extended period of time
— or they did not persist over a large enough range of the frequency-amplitude space to be properly identified with
our limited resolution in (f ∗, A∗) space.

It is likely that a closer examination of the transitional region with small increments in oscillation frequency will
show clearly defined synchronization regions corresponding to commensurate ratios of f ∗. Schnipper et al. (2009)
found periodically repeating vortex patterns in the wake of an oscillating airfoil at low Reynolds numbers with up to
16 vortices per period. Such high-order synchronization modes have yet to be observed in the wakes of transversely-
oscillating cylinders.

3.6. Coalescing (clsc) mode
The low-amplitude (A∗ < 0.5), high-frequency (f ∗ > 1) region of figure 8 was dominated by a ‘coalescing’ mode

of vortex shedding. As illustrated for two example cases in figure 19, this regime is characterized by multiple vortices
being shed in each oscillation cycle with no discernible consistency in the near-wake patterns. In contrast to every
regime considered thus far, the oscillation frequency does not dominate the power spectra, showing that these wakes
are not synchronized with the cylinder motion.

A representative temporal sequence over approximately 1.5 oscillation cycles of case XVII is shown in figure 20.
The lack of synchronization between the cylinder motion and the initial wake structure can be seen by comparing
panels 3 and 10, which occur at approximately the same relative time in the cylinder’s motion (t∗3 = 0.271 and t∗10 =
1.330, approximately one full period later). After some complicated inter-vortex motions in the near-wake, the vortices
then coalesced together into a ‘2S-like’ arrangement, with multiple individual vortices combining to form each element
of the newly-formed vortex street. This amalgamation of many small vortices into large vortices was also reported by
Williamson and Roshko (1988) in the low-amplitude, high-frequency region of the parameter space. The coalescence

Yang, Masroor and Stremler: Preprint submitted to Elsevier Page 20 of 26



Wake of oscillating cylinder at low Re

XVI

XVII

(a) (b) (c)

oscillation

oscillation

vortex
shedding

vortex
shedding

Frequency (Hz)

0.8
0.6
0.4

0.2
0

1.0

0 20 40 60 80

0.8
0.6
0.4

0.2
0

1.0

0 20 40 60 80

Figure 19: Representative cases of coalescing vortex wakes. Rows are labeled according to case with parameters XVI:
(f ∗, A∗) ≈ (1.50, 0.39) at t∗ = 0.196 and XVII: (f ∗, A∗) ≈ (1.36, 0.24) at t∗ = 0.935; cases are identified with the same
labels in figure 8. Columns show (a) the near- and mid-wake regions (image size: 600 × 300 pixels ≈ 10D × 5D), (b) the
extended wake region (image size: 2053 × 600 pixels ≈ 34.2D × 10D), and (c) the normalized power spectrum for each
case. Contrast has been enhanced in the wake images to improve clarity.

of small vortices into a new ‘vortex street’-like arrangement downstream may occur due to the same processes that
lead to the well-known breakdown of the von Kármán street and its subsequent reorganization into a ‘secondary vortex
street’ (see, for example, Kumar and Mittal (2012)).

The coalescing mode of vortex shedding exhibits both disorder— in the rapid shedding of multiple vortices into the
near wake in each oscillation cycle — and order, in the later reorganization of those vortices into a (relatively) regular
vortex street. A von Kármán-like wake was the most commonly observed structure for the coalesced wakes, but the
structure was also observed to vary with time. In case XVI, for example, the merged vortices formed a very consistent
2S-like far wake. Despite this coalesced structure not emerging until downstream of the interrogation window, the
power spectrum for case XVI in figure 19(c) shows a strong peak at the frequency of the far wake, which is lower than
both f and fSt. For case XVII, in contrast, the merged vortices cluster into various patterns that vary with time; the
instant shown in figure 19(b) suggests the vortices were arranging into a pattern that is more ‘2T-like’ than ‘2S-like’.
This lack of a consistent wake pattern is reflected in the power spectra being dominated by fSt and f for case XVII.

3.7. Perturbed von Kármán (pvK) mode
At extremely low oscillation frequencies, the wake does not synchronize with the motion of the cylinder; the

transverse motion is too slow to affect the vortex shedding, which remains independent of the cylinder’s motion.
Instead, vortex shedding continues to occur at its natural frequency and does not synchronize with the cylinder’smotion.
As shown by the three examples in figure 21, the wake structure resembles that of a fixed cylinder but superimposed
along a sinusoidal ‘centerline’ caused by the cylinder’s motion. We thus refer to these wakes as being in a ‘perturbed
von Kármán’ (pvK) mode. The organization of these vortices into distinct patterns in the far wake is the result of
post-shedding vortex dynamics, rather than the interplay between cylinder motion and vortex shedding, as was the
case with the synchronized modes discussed earlier. In the pvK region of parameter space labeled in figure 8, the peak
in the power spectrum associated with the Strouhal frequency (fSt ≈ 20Hz) is comparable to the peak occurring at
the oscillation frequency, as can be seen in figure 21(c).

Although the perturbed von Kármán mode can look similar to the 2S mode at low amplitudes, there is a crucial
difference between these modes. In the 2S mode, clockwise vortices are only shed during the upstroke and counter-
clockwise ones only during the downstroke; in the perturbed von Kármán mode, vortices of either sign are shed during
any part of the cylinder’s cycle. At these low amplitudes, the power spectra of wakes in the (unsynchronized) pvK
mode exhibit stronger peaks at the shedding frequency than at the oscillation frequency (see figure 21(c) panels XVIII
and XIX), in contradistinction to wakes in the synchronized modes, whose spectra always have a stronger peak at the
oscillation frequency. In particular, this criterion was used to classify wakes as pvK as opposed to 2S in cases where
the two are visually similar (compare figure 21 XVIII (b) with figure 10 I (b)).
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Figure 20: Vortex formation process in the ‘coalescing’ mode for case XVII in figure 19. Top
panel: Cylinder positions in time (solid circles) corresponding to the panel images; solid line shows a
sine curve fit to the entire 8.2-second observed trajectory. Numbered panels: flow structure for t∗i =
{−0.032, 0.120, 0.271, 0.422, 0.574, 0.725, 0.876, 1.028, 1.180, 1.330, 1.482, 1.633}, with i given by the panel label. Each wake
image measures 599 × 398 pixels ≈ 10D × 6.6D). Cylinder cross-section in contact with the soap film has been marked by
a filled circle. Images have been processed to highlight flow structure.

At high amplitudes, the window in which the perturbed von Kármán mode occurs shifts further toward the low-
frequency edge of the parameter space, but it still exists; cases XVII and XVIII represent experiments at A∗ = 0.55
and 0.94, respectively. The resulting wakes shown in figure 21 can be interpreted as long-wavelength, high-amplitude
sinusoidal perturbations of a double row of counter-rotating vortices. At these high amplitudes in the pvK mode, the
peak at the shedding frequency is not necessarily stronger than that at the oscillation frequency, but the wake is visually
identifiable as a ‘sinusoidally perturbed’ von Kármán street in which the vortex shedding occurs at fSt rather than at
the oscillation frequency.

The infinite counter-rotating double row of point vortices in an ideal fluid is known to be unstable to large-amplitude
sinusoidal disturbances. However, the growth rate of disturbances decreases with increasing wavelength (Aref, 1995),
which implies that the Kármán street is least unstable to the longest-wavelength disturbances. Therefore, we believe
that the persistence and repeatability of the perturbed von Kármán mode is due to the low growth rate of sinusoidal
disturbances when the wavelength is large relative to the distance between successive vortices. At these low growth
rates, the time scale of the break-up of the vortex street is much longer than the convective time scale, allowing the
vortices to be swept downstream long before the instability can set in.

4. Conclusions
We have presented results for the wake structure of a circular cylinder undergoing controlled transverse oscillations

with normalized amplitudes in the range 0.1 < A∕D < 1.3 and normalized frequencies in the range 0.2 < f∕fSt < 1.8
at Re = 235 ± 14 in a flowing soap film. This Reynolds number value complements previous experimental results
(Williamson and Roshko, 1988) and facilitates comparisons with computational results (Leontini et al., 2006). An
unconstrained wake is likely to develop three-dimensional features at this value of Re (Williamson, 1996a; Leweke
andWilliamson, 1998), but at Re = 235 a two-dimensional analysis remains physically relevant (Leontini et al., 2006).
The ranges for f ∗ and A∗ were chosen to focus on the primary synchronization region, which is of significant interest
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Figure 21: Representative cases of perturbed von Kármán vortex wakes. Rows are labeled according to case with parameters
XVIII: (f ∗, A∗) ≈ (0.48, 0.16) at t∗ = 0.471, XIX: (f ∗, A∗) ≈ (0.32, 0.55) at t∗ = 0.521, and XX: (f ∗, A∗) ≈ (0.24, 0.94) at
t∗ = 0.943; cases are identified with the same labels in figure 8. Columns show (a) the near- and mid-wake regions (image
size: 600 × 300 pixels ≈ 10D × 5D), (b) the extended wake region (image size: 2053 × 600 pixels ≈ 34.2D × 10D), and
(c) the normalized power spectrum for each case. Contrast has been enhanced in the wake images to improve clarity.

owing to its connection with the phenomenon of vortex-induced vibrations in freely-oscillating bluff bodies.
Our results show the wake of a circular cylinder in a soap film being ‘locked-on’ to the cylinder’s motion over

a significant portion of the explored (f ∗, A∗) space. Lock-in leads to a variety of synchronized patterns of coherent
vortices in the wake. For A∗ ≲ 0.5 and 0.6 ≲ f ∗ ≲ 1.1, the wakes synchronized to a 2S mode, with a wake frequency
corresponding to the cylinder oscillation, not the vortex shedding frequency for the corresponding fixed cylinder (i.e.,
not fSt). Increasing the amplitude to A∗ ≳ 0.5 with f ∗ ≈ 1 led to the production of 2P wakes. For the lower
amplitudes and frequencies in this range, the secondary vortex in each pair was quite weak (in the ‘weak 2P’ region),
and the boundary between the 2S and weak 2P structures is highly subjective. The remainder of the 2P regime gave
a clear two-pair structure per shedding cycle, and the relative vortex motion gave evidence of both ‘orbiting’ and
‘exchanging’ modes. With A∗ ≳ 0.5, increasing the oscillation frequency from the 2P regime produced P+S mode
wakes. Experimental limitations confined our observations of P+Swakes to f ∗ ≳ 1.2 and 0.5 ≲ A∗ ≲ 0.7; determining
if P+S wakes can be produced in a soap film for A∗ ≳ 0.7 remains to be determined. Maintaining A∗ ≳ 0.5 and
decreasing the oscillation frequency from the 2P regime led to the production of transitional wakes, for which vortex
generation was synchronized to the cylinder oscillation but consistent wake patterns were not identified. Decreasing
the oscillation frequency further to f ∗ ≈ 1∕3 produced synchronized 2T wakes; this observation appears to be the first
documentation of 2T wake production by a cylinder undergoing purely transverse oscillations.

Moving sufficiently far from f ∗ ≈ 1 produced wakes that were not synchronized with the cylinder motion. For
very low-frequency oscillations, vortices were shed at a frequency corresponding to that for a fixed cylinder, giving rise
to perturbed von Kármán (pvK) wakes consisting of a 2S pattern superimposed on a sine wave. For large oscillation
frequencies (f ∗ ≳ 1.1) with A∗ ≲ 0.5, each oscillation cycle produced multiple closely-spaced vortices that merged
into a smaller number of large vortices, forming a coalesced (clsc) structure in the far wake that typically resembled
a 2S wake. Even though the vortex shedding was not synchronized with the cylinder motion, both the pvK and clsc
wakes typically displayed a stable, periodic structure in the far wake; in fact, these unsynchronized wakes tended to
exhibit a more regular far-wake structure than the synchronized transitional wakes. For the unsychronized wakes,
both the vortex shedding frequency, fSt, and the cylinder oscillation frequency, f , play an important role in the exact

Yang, Masroor and Stremler: Preprint submitted to Elsevier Page 23 of 26



Wake of oscillating cylinder at low Re

structure of the far wake; the details of this dependence remain to be determined.
The results of our soap film experiments show strong correlations with prior experimental and computational

results. At the same time, there are several differences in these results that suggest interesting topics for further inves-
tigation. The occurrence of the 2T mode wakes is one such topic. For another, while the shape of the synchronization
region is consistent with previous results (compare the boundaries of the 2S and weak 2P regions in figure 8 with
those in figure 2(a,b)), the synchronization region in the soap film covers a considerably wider range in f ∗ than in the
traditional flows. Finally, despite the physical constraints of the soap film system, which prevent any span-wise struc-
ture in the wake wider than the thickness of the film, the results presented here are more similar to three-dimensional
experimental results (Williamson and Roshko, 1988) than to two-dimensional computational results (Leontini et al.,
2006), which show at most a weak 2P mode (Placzek et al., 2009; Dorogi and Baranyi, 2020). An exploration of this
intriguing dichotomywill be the subject of a future manuscript. Onemajor conclusion that can be drawn from this work
is that the presence of span-wise three-dimensional effects in the wake, such as the mode A and mode B instabilities
(Williamson, 1996a; Leweke and Williamson, 1998), is not necessary for generation of a 2P wake structure.
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