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Vortex rings are solutions to the Euler equations in axisymmetric form
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Scalar-valued ε confined to a torus
shape with small ϖ

ϑ arises from the Green’s function for
the Laplacian in cylindrical coordinates
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Thomson. “The translatory velocity of a circular vortex ring”. The London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33 (1867)
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Successive vortex rings are often used to model wakes
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It is well known how two vortex rings interact

‘Pass through’ ‘Leapfrogging’

delineation of these regimes is due to Lord Kelvin.
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How do two arrays of vortex rings interact?

what other regimes might exist?
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An infinite coaxial array of identical vortex rings
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Vortex rings induce two streamline topologies
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time-dependent︷ ︸︸ ︷
ϑ̃(z, r) → 1
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self-induced speed︷ ︸︸ ︷
U1(ϖ) r
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Thin annulus-shaped cloud at
low ϖ

Thick biconcave or elliptical
cloud at high ϖ

Critical ϖc ↑ 0.0116, due to
Hicks 1919
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Adding additional vortex rings =↔ no privileged co-moving frame ...
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Di!erent regimes of inter-vortex motion are well-known (Helmholtz 1858)

A recent comprehensive treatment is Borisov, Kilin, and Mamaev. “The dynamics

of vortex rings: Leapfrogging, choreographies and the stability problem”. Regular and

Chaotic Dynamics 18.1 (11, 2013)

Note the absence of any ‘scale’ for !’s, R’s and Z’s — ‘everything is relative’
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... except for the special case: an infinite array of identical rings
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Also move without change of
shape, with speed U→

Independently discovered by
Vasilev 1916 and Levy and
Forsdyke 1927.

Parameterized by two
non-dimensional numbers

ϖ ↓ a/R, ς ↓ L/R



This solution to the Euler equation uses a periodic Green’s function and a modified
self-induced speed U→

ϑ→(z, r; ϖ,ς) =

time-dependent︷ ︸︸ ︷
ϑ̃→(z, r;ς) → 1

2

self-induced speed︷ ︸︸ ︷
U→(ϖ,ς) r2

ϑ̃→(z, r;ς) =

∫

!
G→(z, r; z̄, r̄,ς)ε(z̄, r̄) dz̄ dr̄ U→(ϖ,ς) = U1(ϖ) + U

↑
→(ς)

G→(z, r; z̄, r̄,ς) =
+→∑

j=↓→
G(z, r; z̄ + jς, r̄)

G(z, r; φ, r̄) =

↗
r r̄
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k =
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(z → φ)2 + (r + r̄)2

)1/2

and K,E complete elliptic integrals of the first and second kinds
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An array of vortex rings exhibits three distinct streamline topologies
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An array of vortex rings exhibits three distinct streamline topologies
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Interacting Vortex Ring Arrays
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Interaction of N coaxial vortex rings Borisov et.al (2013)

The interaction of N coaxial vortex rings can be modeled as a dynamical system
with N degrees of freedom in 2N -dimensional phase space:

Żi =
1

!iRi

ωH

ωRi
, Ṙi = → 1

!iRi

ωH

ωZi

whose Hamiltonian H has a self-interaction term and a Green’s function:

H =
1

2ϱ

N∑

i=1

!2
iRi

(
log

8R3/2
i

Bi
→ 7

4

)
+

N∑

i ↔=j

!i!j G(Ri, Zi;Rj , Zj)︸ ︷︷ ︸
ω due to ring j evaluated at ring i

The existence of another integral in involution

P ↓
N∑

j

!jR
2
j ;

dP

dt
= 0

guarantees a canonical transformation to conjugate
variables

(Z1, ...ZN , R1, ..., RN ) ↘ (↼1, ↼2, ...↼N↓1, ↽1, ↽2, ...↽N↓1)

↼̇j = {↼j , H}
↽̇j = {↽j , H}
0 = {P,H}
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Interaction of N coaxial vortex ring arrays

The interaction of N coaxial vortex ring arrays can also be modeled as a
dynamical system with N degrees of freedom in 2N -dimensional phase space:

Żi =
1

!iRi

ωH
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, Ṙi = → 1
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ωH
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, Z ≃ (0, L]
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H =
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2ϱ

N∑

i=1

!2
iRi

(
log

8R3/2
i

Bi
→ 7

4

)
+

∑

i ↔=j

!i!jG→(Ri, Zi;Rj , Zj , L) +
∑

i

!2
iG

↗
→(Ri, Zi;Ri, Zi, L)

↼̇j = {↼j , H}
↽̇j = {↽j , H}
0 = {P,H}
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Żi =
1

!iRi

ωH

ωRi
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Interpreting the Hamiltonian for 2 interacting vortex ring arrays

H =
1

2ϱ

N∑

i=1

!2
iRi

(
log

8R3/2
i

Bi
→ 7

4

)
+
∑

i ↔=j

!i!jG→(Ri, Zi;Rj , Zj , L)+
∑

i

!2
iG

↗
→(Ri, Zi;Ri, Zi, L)

Let N = 2

Masroor Periodic N -vortex ring problem 15 / 33

H =
1

2ϱ
!2
1Ri

(
log

8R3/2
1

Bi
→ 7

4

)

+
1

2ϱ
!2
2R1

(
log

8R3/2
2

Bi
→ 7

4

)

+ !1!2G→(R1, Z1;R2, Z2, L)

+ !2!1G→(R2, Z2;R1, Z1, L)

+ !2
1G

↗
→(R1, Z1;R1, Z1, L)

+ !2
2G

↗
→(R2, Z2;R2, Z2, L)

Self-induction of ring 1

Self-induction of ring 2

E!ect on ring 1 induced by ring 2 and its images

E!ect on ring 2 induced by ring 1 and its images

E!ect on ring 1 induced by its own images

E!ect on ring 2 induced by its own images



Interpreting the reduced variables ↼ and ↽

For N coaxial vortex ring (array)s

‘Real space’ H(Z,R) (Z1, ...ZN , R1, ..., RN )

‘Phase space’ H(ω,ε) (↼1, ↼2, ...↼N↓1, ↽1, ↽2, ...↽N↓1)

↼0 =
N∑

i=1

!iZi

/
N∑

i=1

!i =
!1Z1 + !2Z2

!1 + !2

↼i = Zi+1 →
i∑

j=1

!jZj

/
i∑

j=1

!j = Z2 → Z1

↽i =



R
2
i+1 →

i∑

j=1

!jR
2
j

/
i∑

j=1

!j



 !i+1

i∑

j=1

!j

/
i+1∑

j=1

!j =

R

2
2 →R

2
1

 !1!2

!1 + !2
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Interpreting the reduced variables ↼ and ↽ for 2 vortex ring arrays

For 2 coaxial vortex ring (array)s
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Non-dimensionalizing the problem

The spatial periodicity introduces a new length scale L ...
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z

r
L

R1

Z1

!1R2

Z2

!2

... motivating a re-scaling of all lengths by L.

R
↑
i ↓ Ri

L
, Z

↑
i ↓ Zi

L

also, recall B2 = Ra
2

B
↑
i ↓ Bi

L3/2



Re-scaled canonically conjugate variables ↼↑j and ↽
↑
j

We now have an N -degree of freedom non-canonical Hamiltonian system

Ż
↑
j = {Z↑

j , H
↑} =

1

!jR
↑
j

ωH
↑

ωR
↑
j

, Ṙ
↑
j = {R↑

j , H
↑} = → 1

!jR
↑
j

ωH
↑

ωZ
↑
j
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Ż
↑
j = {Z↑

j , H
↑} =

1

!jR
↑
j

ωH
↑

ωR
↑
j

, Ṙ
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Reduces to (N → 1)-degree of freedom canonical Hamiltonian system:
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Choose to re-scale all
vortex strengths by !1.
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Choose to re-scale all
vortex strengths by !1.

Reduces to (N → 1)-degree of freedom canonical Hamiltonian system:

↼̇
↑
j = {↼↑j , H↑} =
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↑
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ωH
↑

ωP ↑

where P
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L
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↑
j ↓ ↽j

!1L
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Keeping count of our variables and parameters for general N

N vortex rings in a periodic domain N -dof non-canonical Hamiltonian
(Z1, Z2, ...ZN , R1, R2, ..., RN ) 2N coordinates

Transform to (N → 1)-dof canonical Hamiltonian
(↼1, ↼2, ...↼N↓1, ↽1, ↽2, ..., ↽N↓1) 2(N → 1) coordinates

2 ‘global’ constants

Impulse P
↑ — how do the strengths ! and sizes R of the vortex rings

compare with L ?

B
↑
1 — how do the core sizes compare with the length L ?

N → 1 parameters

⇀j↓1 ↓ !j

!1
— relative strength of vortex ring j

⇁j↓1 ↓ Bj

B1
— relative core thickness of vortex ring j
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The periodic 2-vortex ring problem in canonical form

Hamiltonian H(↼, ↽;P ↑
, B

↑
1 ,⇁, ⇀) 4-parameter family of 1-dof systems

Equations of motion:

↼̇ = {↼, H} =
ωH

ω↽
, ↽̇ = {↽, H} = →ωH

ω↼

with the usual Poisson bracket

{f, g} =

(
ωf

ω↼

ωg

ω↽
→ ωf

ω↽

ωg

ω↼

)
.

We recover the full system by way of the
conjugate variables ↼0 and P ,

↼̇0 =
ωH

ωP

Parameters

P
↑ — Impulse of system

B
↑
1 — Thickness of rings

relative to L

⇁ — Relative thickness of rings

⇀ — Relative strength of rings
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Recap the canonical reduction

H(Z1, R1, Z2, R2;!1,!2, B1, B2, L)

Equations of motion:

Ż1 = {Z1, H} =
1

!1R1

ωH

ωR1

Ṙ1 = {R1, H} = → 1

!1R1

ωH

ωR1

Ż2 = {Z2, H} =
1

!2R2

ωH

ωR2

Ṙ2 = {R2, H} = → 1

!2R2

ωH

ωR2

with the modified Poisson bracket

{f, g} =
2∑

j=1

1

!jRj

(
ωf

ωZj

ωg

ωRj
→ ωf

ωRj

ωg

ωZj

)

H(↼, ↽;P ↑
, B

↑
1 ,⇁, ⇀)

Equations of motion:

↼̇ = {↼, H} =
ωH

ω↽

↽̇ = {↽, H} = →ωH

ω↼

with the usual Poisson bracket

{f, g} =

(
ωf

ω↼

ωg

ω↽
→ ωf

ω↽

ωg

ω↼

)
.

We recover the full system by way of
the conjugate variables ↼0 and P ,

↼̇0 =
ωH

ωP
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Ṙ2 = {R2, H} = → 1

!2R2

ωH

ωR2

with the modified Poisson bracket

{f, g} =
2∑

j=1

1

!jRj

(
ωf

ωZj

ωg

ωRj
→ ωf

ωRj

ωg

ωZj

)

H(↼, ↽;P ↑
, B

↑
1 ,⇁, ⇀)

Equations of motion:

↼̇ = {↼, H} =
ωH

ω↽

↽̇ = {↽, H} = →ωH

ω↼

with the usual Poisson bracket

{f, g} =

(
ωf

ω↼

ωg

ω↽
→ ωf

ω↽

ωg

ω↼

)
.

We recover the full system by way of
the conjugate variables ↼0 and P ,

↼̇0 =
ωH

ωP

Masroor Periodic N -vortex ring problem 21 / 33



Integrability of the N -vortex problem
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N
Point vortices
on the plane

Coaxial
vortex rings

Coaxial
vortex ring arrays

1 stationary cyclic/trivial cyclic/trivial
2 cyclic/trivial integrable integrable
3 integrable chaotic chaotic
4 chaotic chaotic chaotic
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Integrability of the N -vortex problem
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N
Point vortices
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Coaxial
vortex rings

Coaxial
vortex ring arrays

1 stationary cyclic/trivial cyclic/trivial
2 cyclic/trivial integrable integrable
3 integrable chaotic chaotic
4 chaotic chaotic chaotic



The reduced Hamiltonian for two coaxial vortex rings
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reproduces a figure from Borisov, Kilin, and
Mamaev 2013



The reduced Hamiltonian for two coaxial vortex ring arrays
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Phase portraits in non-dimensional coordinates ↼↑ and ↽
↑
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Regime I: Leapfrogging
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Regime II: Secular Pass-Through
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Regime III: Retrograde Pass-Through
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Regime IV
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Regime V
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Relative Equilibria
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Equilibrium A



Relative Equilibria
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Equilibrium B



Relative Equilibria
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Equilibrium C



Relative Equilibria
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Equilibrium D



Relative Equilibria
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Equilibrium E



Relative Equilibria
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Equilibrium F



Arrays of coaxial vortex rings — the periodic N -vortex ring problem

Streamfunction in a co-moving reference frame for a single array

Hamiltonian dynamics of multiple arrays of vortex rings

Reduction to canonical coordinates normalized by !1 and L

Phase portraits and relative motion
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