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1. Lotka-Volterra Population Dynamics. Consider a system of equations that describes the population of two
species undergoing competition:

ẋ = x
(
5− x

2
− 4y

)
(1a)

ẏ = y (5− x− 3y) (1b)

(a) Generate the nonlinear phase plane for this system using a computer program of your choice. Identify the
locations of the fixed points visually and classify their type by inspection.

(b) On a copy of the phase plane, sketch the ‘basin of attraction’ for all attracting fixed points.

(c) Determine the ‘carrying capacity’ of the two species.

(d) Consider three cases in which the population dynamics are initialized with the following initial values in
some appropriate units (e.g., you could think of the numbers as representing thousands of animals).

Case Rabbits Sheep
1 0.15 0.08
2 0.16 0.075
3 0.15 0.075

For each case,

i. Plot the population of sheep and rabbits on a single set of ‘number vs time’ axes. There will be six
curves in total; use appropriate legends to communicate this information effectively.

ii. Plot the same information on the phase plane by showing three different trajectories.

2. Consider the two-species population dynamics model shown below.

Ṅ1 = r1N1

(
1− N1

K1

)
− b1N1N2 (2a)

Ṅ2 = r2N2

(
1− N2

K2

)
− b2N1N2 (2b)

(a) Interpret the constants rj , Kj , and bj , j = 1, 2 in terms of the population dynamics of each species.

(b) Assuming that N1 and N2 measure a quantity called ‘units’ that measures population, determine the units
of the constants in these equations.

(c) Show that, with an appropriate re-scaling ofN1, N2 and time t, eq. (2) can be re-written in non-dimensional
form as

dx

dτ
= x(1− α1x)−

xy

α2
, (3a)

dy

dτ
= y(η − y)− xy. (3b)

Find the constants α1, α2 and η in terms of the the coefficients from (2), i.e., in terms of rj , Kj , and bj
for j = 1, 2.

(d) Choose three qualitatively different phase portraits that arise for some choices of α1, α2, and η. One of
these must be a state of mutual coexistence between rabbits and sheep. Plot the phase portrait for each
of these three choices, and write a couple of sentences about the population dynamics shown in each of
them.
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3. Nonlinear terms and damping. The motion of a pendulum can be succinctly represented using a phase portrait
of the kind shown below. In subsequent phase portraits, we will drop the axis labels for neatness.
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Now consider the following phase portraits.

a b

c d

(a) Use what you know about the governing equations of a pendulum, and what you learned in Lab 1, to
match each of the phase portraits above to one of the physical systems described below. Write a sentence
or two explaining your choices, using (simplified, if necessary) equations to support your answers.

1. A ‘linear’ pendulum without damping

2. A ‘nonlinear’ pendulum without damping

3. A ‘linear’ pendulum with damping

4. A ‘nonlinear’ pendulum with damping

(b) Classify all of the fixed points encountered in the nonlinear systems above. Which of the nonlinear systems’
fixed points are hyperbolic fixed points?
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4. It is known from the second law of thermodynamics that the damping coefficient c in the equation for a harmonic
oscillator

mẍ+ cẋ+ kx = 0 (4)

cannot be negative.

(a) What is the essential feature of the phase portrait of a system with negative damping? You should use a
sketch in your answer.

(b) What are the conditions on τ and ∆ (recall that these refer to the trace and determinant of the Jacobian
matrix) for the (0, 0) fixed point of an oscillating system such as the one in (4) to be consistent with the
second law of thermodynamics? You may wish to think about the τ −∆ diagram.

(c) Express your answer to the above in terms of the eigenvalues λ, i.e., what are the conditions that must
be obeyed by the eigenvalues of the Jacobian of the (0, 0) fixed point of (4) such that the second law
of thermodynamics is not violated? You may wish to recall that the trace is equal to the sum of the
eigenvalues and the determinant is equal to the product of the eigenvalues.

5. Consider a 2-dimensional dynamical system written in polar coordinates instead of the usual x, y coordinates.
The two coordinate systems are related by the usual equations

x2 + y2 = r2, and

tan θ =
y

x
.

The dynamical system is

ṙ = −r (5a)

θ̇ =
1

log r
(5b)

where log refers to the natural logarithm.

(a) Does this system have a fixed point? If so, where? Answer this question without a computer.

(b) It can be shown that linearizing the dynamics of eq. (5) leads to a Jacobian matrix of the form A =[
−1 0
0 −1

]
. What type of fixed point does linearization predict system (5) to have?

(c) Solve the equations (5) analytically to decide the long-time behavior of r and θ. To do this, you need to
find expressions r(t) and θ(t); your answers will include constants that depend on the initial conditions
chosen. It may be convenient to denote the initial conditions with r0 and θ0.

(d) Use your answer to the previous part to determine what type of fixed point this system really has. Is
this the same as what the linearization predicted?

6. Potentials. Consider the following two systems, which should already be familiar to you.

θ̈ + sin θ = 0 ẍ+ (x− 1) = 0.

(a) For each system, define a potential V that is a function of the position coordinate x or θ. Recall that
the potential is defined such that the right hand side of the differential equation above should be equal to
(negative of) the derivative of the function V that you choose.

(b) Show that there exists a conserved quantity E that is a function of position and velocity (i.e., x and ẋ, or
θ and θ̇) for each of these systems. Write this conserved quantity explicitly.

(c) Plot the potential V against the position coordinate for each of the two systems.

(d) Where, if any, is this potential a local minimum? Explain physically why the local minimum is at this
point.

(e) Where, if any, is this potential a local maximum? Explain physically why the local maximum is at this
point.
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